Átomos y moléculas en el Universo. La tabla periódica de
los elementos.
Astrónomos y físicos han postulado como origen
del Universo una gran explosión, que a partir de un gas denso formó las innumerables
galaxias que ahora pueblan el Universo. Una de dichas galaxias es la Vía Láctea,
formada por más de 100 mil millones de estrellas, en la que se encuentra
nuestro Sol.
Cuando la
temperatura del Universo era de alrededor de mil millones de grados se
comenzaron a formar los núcleos de los elementos. Al principio se formaron los
más simples: el hidrógeno (H) y el helio (He). Los químicos han ido descubierto
que se pueden clasificar de acuerdo a sus propiedades físicas y químicas en lo
que se ha nombrado la tabla periódica de los elementos.
El hidrógeno es un
gas más ligero que el aire, y es el más abundante del Universo. El átomo de
hidrógeno está formado por un núcleo llamado protón, que posee carga positiva,
la cual se encuentra neutralizada por un electrón.
El agua, producto
formado en la combustión del hidrógeno es la más abundante de la Tierra
cubriendo las ¾ partes del planeta. Esta molécula tan singular y abundante es
la base de la vida: constituye más de la mitad
del peso de los seres vivos.
El agua en estado
puro es un líquido inodoro, incoloro e insípido, su punto de fusión es de cero
grados, su punto de ebullición a nivel de mar es de 100 grados y su calor
específico es de 1.00. El agua en estado sólido es menos densa que en forma
líquida.
Agua Oxigenada
Peróxido de Hidrógeno
H2O2
El agua no es la
única combinación que puede obtenerse entre hidrógeno y oxígeno. Existe además
un compuesto que tiene un átomo de oxígeno más que el agua. La sustancia así
formada es conocida como agua oxigenada, llamada con más propiedad peróxido de
hidrógeno. Esta sustancia es inestable, es decir, libera oxígeno con facilidad
para quedar como agua común. Esta, por su facultad de liberar oxígeno mata
microbios por lo que se emplea como desinfectante de heridas, en cuyo contacto
se puede ver el oxígeno desprenderse en forma de burbujas.
El agua oxigenada
que se consigue en la farmacia como agente desinfectante está muy diluida,
contiene sólo tres partes de agua oxigenada por 97 de agua común. La solución
concentrada es peligrosa, puesto que causa quemaduras al ponerse en contacto
con la piel.
Obtención de Hidrógeno
por descomposición
del agua con metales.
Cuando se arroja un pequeño trozo de sodio metálico sobre agua se efectúa
una reacción violenta, se desprende hidrógeno y se genera calor. En ocasiones
la reacción es tan violenta, que el hidrógeno liberado se incendia.
Una forma más moderada y fácil de controlar la reacción para preparar
hidrógeno es la descomposición de un ácido fuerte por medio de un metal como
fierro o zinc.
La electrólisis en
la obtención de
metales.
La bauxista es un óxido de aluminio muy abundante. De él
se obtiene el aluminio metálico mediante un proceso electrolítico muy
ingenioso, descubierto simultáneamente en los Estados Unidos por Charles M.
Hall , joven de 22 años, y también por un joven en Francia de 22 años llamado
P.L.T Hercult.
El procedimiento descubierto por ambos jóvenes nacidos en 1863 fue idéntico:
ambos se hicieron ricos, disfrutando de ello hasta el fin de sus vidas, que
curiosamente aconteció, también en ambos casos, en 1914.
Con este descubrimiento, el aluminio se abarató, y como llegó a ser tan
común y sus usos tan variados, hoy en día se le puede ver en todas las cocinas
y formando parte de las fachadas de la mayoría de los edificios.
Helio.
El helio, segundo elemento más abundante en el Universo y en el Sol, es
también un gas ligero que, a diferencia del hidrógeno, es inerte, es decir, no
se combina con otros elementos. El helio es tan poco reactivo, que no se
combina ni consigo mismo, por lo que se encuentra como átomo solitario.
El helio, primero de los gases nobles tiene en su núcleo dos protones y su
única capa electrónica se encuentra saturada con dos electrones, razón por la
que es un elemento inerte.
Los demás elementos que existen en el Universo van siendo cada vez más pesados y se encuentran ordenados en la tabla periódica. Como ya vimos en el caso del helio, son inertes por tener saturada su última capa electrónica, por lo tanto, ni reciben ni dan, ni comparten electrones con otros
átomos.
El resto de los planetas de nuestro sistema solar no son tan afortunados
como el nuestro, pues ninguno tiene agua en abundancia ni tiene atmósfera rica
en oxígeno.
Es quizá el
primer disolvente químico preparado por el hombre. Se produce en la
fermentación de líquidos azucarados. Es usado como disolvente para pinturas,
barnices, lacas y muchos otros materiales industriales. También se utiliza
ampliamente como desinfectante. Debido a que también se emplea ampliamente como
ingrediente de bebidas alcohólicas, cuando se vende para usos industriales se
le agrega una sustancia que le comunica mal olor o mal sabor. Al alcohol así
preparado se le llama alcohol desnaturalizado. El alcohol industrial contiene
normalmente 95% de alcohol y tiene un punto de ebullición de 78°. La
eliminación del 5% de agua restante para llegar a obtener el alcohol absoluto
es muy difícil.
Este capitulo habla sobre los Hidrocarburos, otras moléculas orgánicas, su posible existencia en la tierra primitiva y en otros cuerpos celestes. Nos explica la compocisión de planetas como Plutón y Urano así como la compocision de los cometas en especial el cometa Halley que su núcleo es alargado, con la forma de un cacahuate ennegrecido; que sus dimensiones son mayores de las que se habían supuesto. Tiene 15 kilómetros de largo por 10 de ancho en los lóbulos y siete en la parte más angosta, y que la superficie es intensamente oscura, una de las más oscuras que se conocen en cuerpos celestes, comparable a los anillos de Urano.
III. Radiación Solar,
aplicaciones de la radiación,
capa protectora de ozono,
Fotosíntesis, Atmósfera oxidante y
condiciones apropiadas para la vida animal.
Este capítulo nos habla del famoso opio que es una sustancia que se obtiene desecando el jugo de las cabezas de adormideras verdes; tiene, entre otras, propiedades analgésicas, hipnóticas
narcotizantes y su consumo puede provocar dependencia. El opio sirve para hacer calmantes
muy poderosos que son usados por granes cantidades por los pacientes enfermos de cáncer y otras enfermedades que producen dolores que están por encima del nivel de los analgésicos comunes. Este capitulo también habla del envejecimiento del hombre de manera científica
Los pueblos americanos tenían a la llegada de los españoles un amplio conocimiento de las plantas y sus propiedades, especialmente medicinales. Tan impresionante era la variedad de plantas que crecían en el nuevo mundo y tan notable el conocimiento que de ellas tenían los pueblos nativos que lograron interesar vivamente al rey de España.
Otra planta con una larga historia en su uso medicinal es el zoapatle. Esta planta era utilizada por las mujeres indígenas para inducir al parto o para corregir irregularidades en el ciclo menstrual. En la actualidad, su empleo sigue siendo bastante extendido con el objeto de facilitar el parto, aumentar la secreción de la leche y de la orina y para estimular la menstruación.
El pulque fue en Mesoamérica lo que el vino fue para los pueblos mediterráneos.
Colonche
Se conoce como colonche a la bebida alcohólica roja de sabor dulce obtenida por fermentación espontánea del jugo de tuna, especialmente de la tuna cardona (Opuntia streptacantha).
La fermentación alcohólica producida por levaduras ha sido utilizada por todos los diferentes pueblos de la Tierra.
El proceso de fabricación de jabón es, a grandes rasgos, el siguiente: se coloca el aceite o grasa en un recipiente de acero inoxidable, llamado paila, que puede ser calentado mediante un serpentín perforado por el que se hace circular vapor. Cuando la grasa se ha fundido ±8Oº, o el aceite se ha calentado, se agrega lentamente y con agitación una solución acuosa de sosa. La agitación se continúa hasta obtener la saponificación total. Se agrega una solución de sal común (NaCl) para que el jabón se separe y quede flotando sobre la solución acuosa.
Cuando el agua que se usa para lavar ropa o para el baño contiene sales de calcio u otros metales, como magnesio o fierro, se le llama agua dura.
Los primeros detergentes sintéticos fueron descubiertos en Alemania en 1936, en lugares donde el agua es muy dura y por lo tanto el jabón formaba natas y no daba espuma. Los primeros detergentes fueron sulfatos de alcoholes y después alquilbencenos sulfonados, más tarde sustituidos por una larga cadena alifática, generalmente muy ramificada.
Antes de que el hombre creara la gran industria del jabón se usaban jabones
naturales llamados saponinas (nombre derivado del latín sapo, jabón)
y conocidos por los mexicanos como amole. Muchas raíces y
follaje de plantas tienen la propiedad de hacer espuma con el agua, por lo que
se han utilizado desde la Antigüedad para lavar ropa. Los pueblos prehispánicos
del centro de México llamaban amole a estas plantas y eran sus
jabones. Aun en la actualidad en muchas comunidades rurales se emplea el amole tanto
para lavar ropa fina, como para evitar que se deteriore, ya que es un
detergente neutro perfectamente degradable.
Este capítulo habla sobre la fabricación de jabones, saponinas y detergentes. Nos explica de que elementos y compuestos están formados en el jabón, detergentes y saponinas. Habla tambien de la producción de saponina de unas plantas veneosas, formando así un veneno muy activo capaz de matar en dosis tan bajas como 0.07 mg a un ratón de 20 gramos,
Existen tres clases principales de mensajeros químicos: alomonas, kairomonas y feromonas
El que los animales respondan a señales químicas se sabe desde la Antigüedad: los perros entrenados siguen a su presa por el olor.
Las hormonas femeninas son sustancias esteroidales producidas en el ovario. Estas sustancias dan a la mujer sus características formas redondeadas y su falta de vello en el rostro.
Existen dos sustancias sintéticas que, aunque no poseen estructura de esteroide, tienen fuerte actividad hormonal (estrogénica). Estas son las drogas llamadas estilbestrol y hexestrol.
Desde principios del siglo (1911), L. Loeb demostró que el cuerpo amarillo del ovario inhibía la ovulación. L. Haberland, en 1921, al trasplantar ovarios de animales preñados a otros animales observó en estos últimos una esterilidad temporal. Los hechos anteriores indicaban que en el ovario y especialmente en el llamado cuerpo amarillo que se desarrolla en el ovario, después de la fecundación, existía una sustancia que produce esterilidad al evitar la ovulación.
Este capítulo habla sobre las diferentes hormonas vegetales y animales, nos hablan sobre los efectos de estas hormonas y las posibles consecuencias al consumirlas como por ejemplo el consumo de esteroides anabólicos ayuda al desarrollo muscular, pero por desgracia existen efectos secundarios que pueden ir desde mal carácter y acné, hasta tumores mortales. Este capitulo da a conocer las graves consecuencias al tomar algunas de estas hormonas, pueden que sus efectos secundarios sean menores, pero estas, en exceso son malas para la salud del ser humano
Muchos insectos poseen aguijones conectados a glándulas productoras de sustancias tóxicas con los que se defienden de los intrusos. Las avispas y las abejas son insectos bien conocidos por inyectar sustancias que causan dolor y alergias. El hombre conoce bien estas cualidades, pues muchas veces por perturbar la tranquilidad del enjambre ha sido inyectado con dopamina o histamina, sustancias entre otras que son responsables del dolor, comezón e hinchazón de la parte atacada.
Los mamíferos también poseen armas químicas. Es bien conocido por todos el arma tan poderosa que posee el zorrillo. Cuando este animal es atacado por un depredador, ya sea el hombre u otro animal, utiliza su arma química: lanza con fuerza un líquido irritante con un olor desagradable que persiste por horas y aun por días en los objetos que tocó. Entre los componentes del olor a zorrillo se encuentra el butil mercaptano.
Posiblemente la primera reacción química que el hombre aprovechó para destruir a su enemigo fue el fuego. La misma reacción de oxidación que logró dominar para tener luz y calor, para cocinar alimentos y fabricar utensilios, en fin, para hacer su vida más placentera, fue usada para dar muerte a sus congéneres al quemar sus habitaciones y cosechas.
La bomba lanzada sobre Hiroshima fue una bola de uranio 235 no mayor de 8 cm de diámetro y de más o menos 5 kg. Pero como la fisión del uranio tiene un poder explosivo aproximadamente 10 millones de veces mayor que el TNT, la bomba debió equivaler a 20,000 tons de TNT.
Las sustancias de alta toxicidad fueron utilizadas como armas químicas en la primera Guerra Mundial. Los alemanes lanzaron, en abril de 1915, una nube de cloro sobre los soldados franceses quienes, al no estar protegidos, tuvieron que retirarse varios kilómetros. Pocos días después los alemanes repitieron el ataque contra las tropas canadienses con los mismos resultados.
Los alemanes desarrollaron a finales de la segunda Guerra Mundial los gases
neurotóxicos sarina o GB y tabun.
Estos gases son más letales que las armas químicas usadas en la primera Guerra Mundial. Son inodoros, por lo que es muy difícil detectarlos antes de que hayan hecho daño mortal.
Las auxinas sintéticas usadas para matar las malezas de los cultivos y así
obtener mejores cosechas fueron desarrolladas en Inglaterra desde los años
treinta, poco después del descubrimiento del ácido indol acético como regulador
natural del crecimiento de las plantas.
El agente naranja es una combinación de dos herbicidas que, en pruebas hechas
en selvas tropicales africanas, mostró ser muy eficiente como defoliador de
árboles. El agente naranja contiene dos herbicidas, el ácido 2,4,D y el
2,4,5,T. Al ser aplicado a los campos de cultivo, hace que las plantas crezcan
demasiado rápido y mueran antes de producir sus frutos.
El agente naranja que se aplicó sobre los bosques de Vietnam venía contaminado
con dioxina, una sustancia altamente tóxica que provocó trastornos en la salud
de los veteranos de la guerra de Vietnam.
Dadas las historias contadas por los montañeses del sudeste de Asia acerca de
la aparición de nubes amarillas que matan rápidamente a quienes toca en forma
directa y que enferma con extraños síntomas a la gente más alejada, y las de
algunos nativos de Laos y Kampuchea que hablan de lluvia amarilla que provoca
muerte y enfermedad, la embajada de los Estados Unidos y después la comunidad
científica internacional comenzaron a inquietarse.
Recientemente en la planta de insecticidas de Bhopal en el centro de la India
se sufrió un accidente con el escape de isocianato de metilo.
Los demás elementos que existen en el Universo van siendo cada vez más pesados y se encuentran ordenados en la tabla periódica. Como ya vimos en el caso del helio, son inertes por tener saturada su última capa electrónica, por lo tanto, ni reciben ni dan, ni comparten electrones con otros
átomos.
La atmósfera primitiva
de la Tierra.
Cuando en el planeta Tierra aún no se iniciaba la vida, debió existir una atmósfera muy diferente a la actual.
El científico ruso Oparin supone que estaba compuesta por vapor de agua (H2O), amoniaco (NH3), e hidrocarburos, principalmente metano, conteniendo también ácido sulfhírico.
Tal mezcla de gases, sometidos a altas temperaturas y a la radiación ultravioleta que llegaba del Sol sin obstáculos, debieron dar origen a nuevas moléculas orgánicas, como los aminoácidos.
En 1953, el científico estadounidense Miller dio apoyo a la teoría de
Oparin mediante un experimento bastante sencillo: puso en un recipiente cerrado
vapor de agua (H20), metano (CH4), hidrógeno (H2) y amoniaco (NH3), y sometió
esta réplica de la atmósfera primitiva a 17descargas eléctricas durante una
semana; al cabo de ese tiempo se habían formado en su interior ácidos orgánicos,
distintos aminoácidos y urea. Reacciones como la mencionada debieron realizarse
continuamente en la atmósfera de aquel entonces. Más aún, es muy probable que
el vapor de agua contenido en ella se disociara por acción de los rayos
ultravioleta, dando lugar a la generación de oxígeno. Éste, en ese momento, debido
a su reactividad, no llegó nunca a concentraciones apreciables, pues se
combinaba con los elementos de la corteza terrestre para dar óxidos.De esta manera oxidó al amoniaco (NH3), que abundaba en la atmósfera de la
Tierra joven, dando como producto agua y nitrógeno. Con el tiempo, la cantidad
de este último aumentó gradualmente hasta llegar a predominar en la atmósfera.
Por su parte, una cierta cantidad del O2 que quedaba se combinó entre sí,
debido a la acción de la radiación ultravioleta que llegaba del Sol sin encontrar
ningún obstáculo, dando lugar a la formación del ozono (O3), el cual, al formar
una capa en la atmósfera superior, impidió posteriormente, en gran medida, la entrada
de este tipo de rayos, con lo que se facilitó de esta manera la aparición de la
vida vegetal. Ésta, a su vez, por medio de la fotosíntesis, descompuso el CO2, con
la consiguiente liberación de oxígeno, el que gradualmente se fue acumulando en
la atmósfera hasta propiciar la vida animal.
Las condiciones que existen en los planetas más cercanos al Sol, Mercurio y
Venus, son impropias para la vida. En Mercurio existen temperaturas superiores
a los 300° en el día e inferiores a 200° bajo cero por la noche. Su atmósfera,
constituida por gases inertes como helio, 18argón y neón, la hace completamente
irrespirable para el ser humano, quien moriría por asfixia en poco tiempo. Venus,
por su parte, tiene temperaturas también muy altas y una atmósfera muy ácida,
donde predomina el bióxido de carbono, además de ácidos fuertes como el sulfúrico,
el clorhídrico, el fluorhídrico y el sulfhídrico. Los grandes planetas más alejados
de la Tierra: Júpiter, Saturno, Urano y Neptuno, además de ser muy fríos, tienen
una atmósfera en que el principal constituyente es el hidrógeno, aparte de cantidades
apreciables de helio y metano. Tienen, por consiguiente, atmósferas reductoras impropias
para la vida humana.
Componentes del
cuerpo humano.
Los principales elementos de que está formado el cuerpo humano son carbono
(C), oxígeno (O), hidrógeno (H) y nitrógeno (N), elementos que son también los
principales componentes de otros seres vivos, desde los organismos unicelulares
hasta los enormes seres pluricelulares, como las ballenas y los grandes árboles,
ejemplo de los cuales tenemos el gran ahuehuete de Santa María del Tule, cuyo
tronco mide más de 50 metros de circunferencia. La molécula más abundante en
los seres vivos es el agua. En el ser humano llega a ser más de 70% de su peso.
De manera que si un hombre de 100 kg de peso fuese desecado, su materia seca
pesaría tan solo 30 kg. Ahora bien, si esta materia restante fuese incinerada,
la mayor parte se convertiría en bióxido de carbono que regresaría a la atmósfera.
Lo mismo sucede con el nitrógeno de sus proteínas, las que al ser convertidas
en óxidos de nitrógeno pasarían a la atmósfera. Como material sólido quedarían
las cenizas, que son óxidos provenientes de los componentes inorgánicos del
cuerpo, entre los que encontraríamos el óxido de calcio o cal viva, además de
óxidos de sodio, potasio, hierro y fósforo.
Los elementos que forman parte de los seres vivos, no solo son importantes constituyentes de nuestro planeta, lo son también otros cuerpos celestes, encontrándose e incluso en los espacios interestelares.
Este capítulo me fué útil ya que nos ayuda a entender de una manera sencilla los compuestos que conforman el Universo, así como los mas abundantes como el hidrógeno y el helio.
También nos da a conocer los componentes del cuerpo humano los cuales son Carbono (C), Oxígeno (O), Hidrógeno (H) y Nitrógeno (N). Asimismo dicho capítulo nos explica la obtención de hidrógeno por medio de la electrolisis y nos da a conocer como era la atmósfera de la Tierra.
También nos da a conocer los componentes del cuerpo humano los cuales son Carbono (C), Oxígeno (O), Hidrógeno (H) y Nitrógeno (N). Asimismo dicho capítulo nos explica la obtención de hidrógeno por medio de la electrolisis y nos da a conocer como era la atmósfera de la Tierra.
II. El átomo de carbono, los Hidrocarburos,
otras moléculas orgánicas,
su posible existencia en la tierra primitiva
y en otros cuerpos celestes.
LA TEORÍA de la gran explosión como origen del Universo concibe la formación
del átomo de carbono (peso atómico = 12) en el interior de las estrellas
mediante la colisión de tres átomos de helio (peso atómico = 4).
La generación del carbono y de los átomos más pesados se dio en el interior
de las estrellas antes de la formación de nuestro Sistema Solar, cuyo
nacimiento, a partir de materiales cósmicos, polvo y gas provenientes de los restos
de estrellas que explotaron, se remonta a un pasado inimaginable: algo así como
4 600 millones de años.
Cuando la tenue nube de polvo y gas fue comprimida por la onda de choque
producida por la explosión de una estrella de las llamadas supernovas, se formó
la nebulosa en cuyo centro la materia se concentró y calentó hasta producir
nuestro Sol.
Rodeando al Sol, la materia fue siendo cada vez más fría y sus elementos
constitutivos más ligeros. Con este material se formaron los planetas y sus
lunas.
La diferente composición química del
cuerpo de los planetas y de su atmósfera se debe en parte a que se formaron en
regiones de la nebulosa con distintas temperaturas, por lo que los planetas
interiores, Mercurio, Venus, Tierra y Marte, son rocosos, con gran proporción
de metales, óxidos y silicatos. En cambio, los planetas exteriores contienen
más gases. Así, los planetas interiores han perdido alrededor de 98% de su peso
original por haber estado formados de material volátil como hidrógeno y helio,
mientras que los planetas lejanos conservan enormes cantidades de hidrógeno y helio.
La Tierra, el tercer planeta del
Sistema Solar, tuvo la fortuna de no ser tan caliente como Mercurio y Venus, ni
tan frío como los planetas más alejados del Sol. Contiene agua en abundancia y
carbono en cantidades también relativamente abundantes, además del resto de los
elementos estables, es decir todos los elementos de la tabla periódica hasta el
número 92, metal conocido con el nombre de uranio.
El carbono, elemento base de la vida, se encuentra en la corteza terrestre
en una proporción de 0.03%, ya sea libre o formando parte de diversas
moléculas. Como era de suponerse, el carbono se encuentra también en los demás
planetas de nuestro Sistema Solar, ya que todos fueron formados a partir de la
misma nebulosa. Se ha comprobado su existencia en meteoritos y en las muestras
de piedras traídas de la Luna.
En la Tierra se le encuentra: libre
en forma de diamante o de grafito; combinado, formando parte de diversas moléculas
orgánicas como la celulosa de la madera, el algodón y el azúcar; formando parte
de sustancias inorgánicas como el mármol, que químicamente es el carbonato de
calcio (CaCO3), el bicarbonato de sodio o polvo de hornear (NaHCO3) y, en la
atmósfera terrestre, como bióxido de carbono (C02), de donde las plantas lo toman
y lo transforman, con la ayuda de la energía solar, en sustancias orgánicas que
incorporan a su organismo.
Estas sustancias serán posteriormente utilizadas por
algunos de los seres del reino animal como alimento.
Éstos, a su vez, oxidarán la materia
orgánica, liberando bióxido de carbono (CO2) para completar el ciclo de la vida.
COMPUESTOS DEL CARBONO
Como hemos visto, el átomo de
carbono, por tener cuatro electrones de valencia, tiende a rodearse por cuatro
átomos, ya sean del propio carbono, como en el diamante, o de diferentes
elementos, con los que comparte cuatro de sus electrones para así completar su
octeto, que es lo máximo que puede contener en su capa exterior. PRIMEROS
HIDROCARBUROS La Tierra, al igual que los demás planetas, tuvo en su primera
época una atmósfera rica en hidrógeno (H2), por lo que el carbono (C) reaccionó
con él formando moléculas de hidrocarburos (carbono hidrogenado). Como el
hidrógeno contiene un solo electrón de valencia, cada átomo de carbono se une a
cuatro de hidrógeno formando el más sencillo de los hidrocarburos, el metano
(CH4). El metano es una molécula estable en la que las capas electrónicas de
valencia, tanto del hidrógeno como del carbono, están saturadas, el primero
formando un par como en el helio y el segundo un octeto como en el neón.
Metano
El metano, el más simple de los hidrocarburos, es el
resultado de la unión de un átomo de carbono con cuatro hidrógenos. En éste,
como en el diamante, las cuatro 30 valencias van dirigidas hacia los vértices
de un tetraedro. El metano es un gas volátil e inflamable que, por su alto
contenido de calor, es un combustible eficaz. Es el principal componente del
gas natural, en donde se encuentra junto con otros hidrocarburos gaseosos como
etano, propano y butano. Este gas, también llamado gas de los pantanos, por
formarse debido a la acción de microorganismos sobre la materia orgánica,
también se produce en el estómago de los mamíferos cuando éstos tienen una mala
digestión
El metano y otros compuestos químicos en los cuerpos celestes.
El metano formó
parte de la atmósfera primitiva de la Tierra, donde se generó por la acción
reductora del hidrógeno sobre el carbono. Era el gas predominante en la
atmósfera terrestre de aquel entonces. Actualmente el metano forma parte de la atmósfera
de los planetas fríos que se encuentran más allá de Marte en nuestro Sistema
Solar, es decir Júpiter, Neptuno, Urano y Plutón. Júpiter Las naves espaciales
Pionero y Viajero I revelaron un mundo fascinante en que las capas de distintos
colores se suceden en este enorme planeta, cuyo diámetro es 11 veces el de la
Tierra.
Saturno
El Viajero I llegó a Saturno en noviembre de 1980,
después de su inspección por Júpiter y sus satélites, mostrando un enorme
planeta, aunque algo menor que el anterior. Este planeta, que se distingue de
los demás por su bello e impresionante sistema de anillos, posee una atmósfera
en la que predomina el hidrógeno, aunque es rica también en metano, etano y
amoniaco. Debido a la baja temperatura del planeta, el etano y el amoniaco se
encuentran en estado sólido, y el helio se condensa cayendo como lluvia sobre
la superficie del planeta. Titán. Con este nombre se conoce a la mayor luna de
Saturno, un cuerpo celeste con tamaño comparable al de la Tierra. Urano, A semejanza de Saturno, está rodeado de anillos,
aunque éstos están constituidos por un material oscuro
que refleja muy poco de la luz solar que reciben, por lo
que quizá estén formados por sustancias derivadas del
carbono.
Neptuno. Es, como Urano, un gigante verdoso con
aproximadamente las mismas dimensiones y con una
composición química parecida.
Plutón
Además de
ser el más lejano y más pequeño de los planetas del Sistema Solar, es también
el menos denso. Su composición química, según las últimas observaciones, queda
así: agua sólida 74%, metano 5% y roca 21%. Plutón, a pesar de ser tan pequeño,
tiene una luna. Sin embargo, la gran lejanía impide hacer deducciones de la
química de este pequeño y apartado cuerpo celeste.
La posibilidad de reacciones químicas entre las
moléculas que forman la atmósfera de estos planetas es, debido al frío, muy
restringida. El hidrógeno, que forma 90% de las atmósferas de Urano y Neptuno,
no puede arder por la falta de oxígeno. Tampoco el metano, que se asemeja al
gas de nuestras estufas, puede arder, pues falta el oxígeno necesario para que
se efectúe la reacción de oxidación que sucede cuando encendemos nuestra estufa
o el calentador de nuestro baño.
El otro
elemento que se encuentra en la atmósfera de Urano y Neptuno es el helio, del
que ya sabemos que es inerte. Es un elemento que por más que lo calentemos en
presencia de oxígeno no arde, pues por tener completa su órbita de valencia no
reacciona ni consigo mismo; es por esto que siempre se encuentra como átomo
solitario (He). En la atmósfera de Plutón se ha detectado metano, además de los
gases nobles, argón y neón, razón por la cual su atmósfera es inerte. Por
tanto, el metano en esas condiciones no podrá arder dando bióxido de carbono,
agua, luz y calor, como lo hace en la Tierra.
LOS COMETAS
En los
helados confines del Sistema Solar existen congelados millones de pequeños
cuerpos celestes formados de hielo, gas y polvo. Cuando alguno de ellos es
perturbado por el paso de una estrella, se pone en movimiento y, al recibir el
calor del Sol, cobra vida, libera gases y polvo e inicia un viaje describiendo
una órbita elíptica alrededor del Sol. A veces invierte miles de años en
terminar este viaje. Mientras más se acerca al Sol en su recorrido, el cometa
libera más materia, átomos y moléculas que, arrastradas por el viento solar,
constituyen su cauda, la que, debido a dicho impulso, siempre se verá opuesta
al Sol. Si en un camino alguno de los cometas se acerca demasiado al Sol, toda
su materia se evapora, dando un espectáculo de luz antes de que sus átomos y
moléculas pasen a formar parte de la materia invisible del Universo. Las
órbitas de algunos de ellos son alteradas por influencia de los grandes
planetas, convirtiéndose en cometas de periodo corto, como es el caso del cometa
Halley, que pasa por las cercanías de la Tierra cada 76 años. Los cometas,
después de haber sido observados a simple vista o por medio de telescopios y
estudiados espectroscópicamente, se han descrito como pequeños cuerpos de hielo
que mientras brillan a la luz del Sol emiten gases y polvo, y cuyas moléculas
se descomponen en iones y radicales por acción del viento y radiación
ultravioleta solares.
EL COMETA HALLEY
Las naves espaciales enviadas para su exploración
y estudio por japoneses, soviéticos y europeos confirmaron muchos de los
conceptos previamente establecidos, pero además revelaron datos sorprendentes,
muchos de los cuales aún no han sido suficientemente estudiados. 35 De gran
interés fue descubrir que su núcleo es alargado, con la forma de un cacahuate
ennegrecido; que sus dimensiones son mayores de las que se habían supuesto.
Tiene 15 kilómetros de largo por 10 de ancho en los lóbulos y siete en la parte
más angosta, y que la superficie es intensamente oscura, una de las más oscuras
que se conocen en cuerpos celestes, comparable a los anillos de Urano (tan solo
refleja 4% de la luz solar que ilumina). Así, ahora se sabe que el núcleo no es
una brillante bola de hielo, sino una oscura bola de hielo y polvo cubierta de
una delgada capa de un material oscuro constituido probablemente por derivados
de carbono.
METANOL, ALCOHOL
METÍLICO o
ALCOHOL DE MADERA
El alcohol
metílico, el más sencillo de los alcoholes, tiene 39 un solo átomo de carbono,
y su preparación difiere un poco de la correspondiente a los demás alcoholes.
El método más antiguo consiste en una destilación seca de la madera, por lo que
se le conoce como alcohol de madera. Este procedimiento es el empleado por los
fabricantes de carbón vegetal, sólo que ellos lanzan a la atmósfera todos los
componentes volátiles como el metanol y la acetona. En la actualidad existen
métodos más baratos y eficientes para su preparación. El alcohol metílico es
venenoso. Si se ingiere, se respiran sus vapores o se expone la piel a su
contacto por un periodo prolongado, puede provocar ceguera y aun la muerte, por
lo que es necesario ser muy cuidadosos para no confundirlo con el alcohol
etílico. El alcohol metílico se usa ampliamente como disolvente en química
orgánica, es decir como medio en que se llevan a cabo muchas reacciones
químicas.
ALCOHOL ETÍLICO
Este capitulo habla sobre los Hidrocarburos, otras moléculas orgánicas, su posible existencia en la tierra primitiva y en otros cuerpos celestes. Nos explica la compocisión de planetas como Plutón y Urano así como la compocision de los cometas en especial el cometa Halley que su núcleo es alargado, con la forma de un cacahuate ennegrecido; que sus dimensiones son mayores de las que se habían supuesto. Tiene 15 kilómetros de largo por 10 de ancho en los lóbulos y siete en la parte más angosta, y que la superficie es intensamente oscura, una de las más oscuras que se conocen en cuerpos celestes, comparable a los anillos de Urano.
III. Radiación Solar,
aplicaciones de la radiación,
capa protectora de ozono,
Fotosíntesis, Atmósfera oxidante y
condiciones apropiadas para la vida animal.
EN EL Sol se están generando constantemente
grandes cantidades de energía mediante reacciones 48 termonucleares. La energía
radiante se propaga por el espacio viajando a razón de 300 000 km por segundo
(velocidad de la luz, c). A esta velocidad, las radiaciones llegan a la Tierra
ocho minutos después de ser generadas. Las distintas radiaciones solares, de
las cuales la luz visible es sólo una pequeña parte, viajan por el espacio en
todas las direcciones, como los radios de un círculo, de donde proviene su
nombre. La pequeña porción del espectro electromagnético que percibe el ojo
humano es llamada "luz visible" y está compuesta por radiaciones de
poca energía, con longitudes de onda (l) que van de 400 a 800 nm (nm = nanómetro = 10-7 cm).
La luz de
menor longitud de onda (l = 400 nm) es de color violeta; le sigue
la de color azul; después tenemos la luz verde, seguida de la luz amarilla y la
anaranjada y, por último, a 800 nm, la luz roja con la que termina el espectro
visible. Antes del violeta, es decir a longitudes de onda menores de 400 nm,
existen radiaciones de alta energía que el ojo humano no puede percibir,
llamadas ultravioleta. Otras radiaciones de alta energía, y por lo tanto
peligrosas para la vida, son los llamados rayos X y las radiaciones gamma. Por
su parte, a longitudes de onda mayores que la de la luz roja (800 nm) existen
radiaciones de baja energía, llamadas infrarrojo, microondas y ondas de radio. El
vapor de agua existente en la atmósfera primitiva de la Tierra estuvo expuesto
a la radiación ultravioleta que durante millones de años llegó hasta la
superficie terrestre sin dificultad. Las moléculas de agua eran descompuestas
en hidrógeno (H2) y oxígeno (O2) por la 50 alta energía del ultravioleta, el
cual tiene una corta longitud de onda. A pesar de que la producción de oxígeno
era constante, la naturaleza reductora de la atmósfera se conservaba, ya que
gran parte del oxígeno generado era consumido en la formación de óxidos con los
elementos de la corteza terrestre y produciendo agua y nitrógeno al reaccionar
con el amoniaco que abundaba en la atmósfera terrestre. 4 NH3 + 3O2 2 N2 + 6
H2O Por medio de este procedimiento la atmósfera se iba enriqueciendo en
nitrógeno y oxígeno. Parte del oxígeno que ingresaba en la atmósfera era
activado por la radiación ultravioleta y transformado en su alótropo, una forma
de oxígeno de alta energía llamado ozono (03). De esta manera se fue formando
una capa protectora contra la radiación ultravioleta que se situó a una altura
de alrededor de 30 km sobre la superficie terrestre. Esta capa de ozono protege
a la Tierra de las radiaciones ultravioleta que, debido a su alta energía, son
dañinas para la vida, ya que excitan a átomos y moléculas a tal grado, que
puede hacer que un electrón abandone al átomo.
La luz
ultravioleta, al activar los átomos moleculares, puede dar origen a radicales
libres. Si estos radicales forman parte de un ser vivo, pueden causarle trastornos
graves como cáncer y aun conducirlo a la muerte. La intensidad de absorción en
las distintas l del espectro visible varían de acuerdo con la
figura 12. Como en ella se ve, la clorofila absorbe en el azul y en el rojo y
no en el verde, el cual es reflejado, razón por la que las hojas se ven verdes.
El aparato fotosintético consta de clorofila y una serie de pigmentos como
carotenos y xantofilas, todos ellos unidos a una proteína embebida en una
membrana, lo que permite una buena transmisión de energía. 57 Los pigmentos
diferentes a la clorofila ayudan a absorber en las ls entre 450 y 650 nm, punto en que la clorofila es
deficiente.
Las cantidades y proporciones de pigmentos
secundarios varía de planta a planta, siendo precisamente éstos los que le dan
el color característico a las hojas. De aquí que se puedan encontrar de tono
azulado, como en algunos eucaliptos; de tono amarillo, como en la lechuga, o de
tono rojizo, como en algunos amarantos. Los pigmentos que absorben la luz,
situados en la membrana, se hallan dispuestos en conjuntos. Estos fotosistemas
contienen alrededor de 200 moléculas de clorofila y algunas 50 de carotenoides.
Todas las moléculas del conjunto pueden absorber luz, pero sólo una molécula de
clorofila, combinada con una proteína específica, transforma la energía
luminosa en energía química, por lo que recibe el nombre de centro de reacción
fotoquímica.
FORMACIÓN
DE AZÚCARES Y OTROS COMPUESTOS ORGÁNICOS
Los organismos fotosintéticos producen glucosa y
otros azúcares a partir del CO2 atmosférico y el agua del suelo, usando la
energía solar acumulada en el ATP y el NADPH El proceso descubierto por Melvin
Calvin es el siguiente: 6 CO2 + 18 ATP + 12 H2O + 12 NADPH + 12 H+ C6H12O6 + 18
Pi + 18 ADP + 12 NADP+ El azúcar de cinco átomos de carbono se combina con CO2,
catalizado por la enzima carbonílica 1,5-difosfato de ribulosa, produciendo dos
moléculas de ácido fosfoglicérico, el que se combina entre sí para dar el
azúcar de fruta o glucosa.
IV. Vida animal,
Hemoglobina, energía
de compuestos orgánicos,
dominio del fuego.
La química, que antes de la aparición de la vida se
efectuaba en el planeta espontánea pero lentamente,
ahora se acelera en forma notable. El oxígeno que se
generaba por fotólisis del agua, ahora se libera de ésta
en forma eficiente mediante la reacción de fotosíntesis,
usando la luz solar como fuente de energía.
La hemoglobina es una cromoproteína compuesta por una proteína, la globina, unida a una molécula muy parecida a la clorofila, pero que, en vez de magnesio, contiene fierro; el oxígeno se le une en forma reversible. Cuando la hemoglobina está unida a oxígeno se llama oxihemoglobina y cuando lo ha soltado deoxihemoglobina.
El fierro necesario para la formación de hemoglobina el
ser humano lo toma en su dieta a razón de 1 miligramo por día, acumulándose
normalmente 4 gramos de él en los adultos. Es decir, un ser humano adulto
tendría fierro suficiente como para elaborar un clavo de 4 centímetros de
largo.
Otro mineral que el organismo humano requiere en
cantidades apreciables es el muy común metal alcalino térreo llamado calcio,
cuyos compuestos son bien conocidos. Ejemplo de esto son la cal y el
mármol.
La cantidad de calcio que un adulto necesita ingerir
diariamente en su dieta es de alrededor de 1 gramo, es decir, la cantidad que
corresponde al contenido de calcio en un trozo de mármol de 2.5 gramos.
El fósforo es otro de los elementos indispensables para
el funcionamiento del organismo humano por lo que requiere ingerir diariamente
en los alimentos alrededor de 1 gramo.
Pero volvamos al fierro. Una vez que éste ha sido
asimilado, cada átomo permanecerá en el organismo por un tiempo aproximado de
10 años, durante los cuales pasará por muy diversos estados metabólicos,
combinándose con diferentes sustancias y realizará muchos procesos, entre los
cuales está uno sumamente importante para el organismo humano: el de
transportar oxígeno a los tejidos. Un gramo de hemoglobina se combina con 1.35
mililitros de oxígeno.
LOS ANIMALES Y EL HOMBRE
De todos los animales que poblaron el planeta hubo uno que destacó por tener un
cerebro mayor que los demás: el hombre. Aunque más débil que otros animales de
su mismo peso, que competían con él por alimentos y espacio, fue poco a poco
dominando su entorno vital gracias a su cerebro superior, que le permitía
aprender y asimilar experiencia.
El cerebro es un órgano maravilloso que
distingue al hombre de los demás animales y lo ha llevado a dominar el planeta
y, más aún, a conocer otros mundos.
Siendo el cerebro un órgano tan importante,
es lógico que sea alimentado en forma privilegiada en relación con los demás
órganos del cuerpo. El cerebro recibe glucosa pura como fuente de energía, y
para su oxidación usa casi el 20% del oxígeno total que consume un ser humano
adulto.
El cerebro de un adulto requiere más de 120
gramos de glucosa por día, misma que puede provenir de precursores tales como
el piruvato y los aminoácidos.
La glucosa es aprovechada por el cerebro vía
secuencia glicolítica y ciclo del ácido cítrico, y el suministro de
ATP
es generado por catabolismo de glucosa. La energía de ATP
se requiere para mantener la capacidad de las
células nerviosas (neuronas) manteniendo así el potencial eléctrico de las
membranas del plasma, en particular de aquellas que rodean el largo proceso en
que intervienen axones y dendritas, que son las que forman la línea de
transmisión del sistema nervioso.
El cerebro gobierna las emociones y el dolor
por medio de reacciones químicas. La química del cerebro es muy complicada y no
es bien conocida todavía; sin embargo, es muy interesante la relación que
existe entre los efectos del alcaloide morfina, el alivio del dolor y las
sustancias naturales del cerebro llamadas endorfinas y encefalinas.
OPIO, MORFINA Y
SUSTANCIAS OPIÁCEAS
DEL CEREBRO.
El uso
del opio como sustancia analgésica es conocido desde tiempos muy remotos; los
griegos la usaron varios siglos antes de Cristo.
Uno de
los principales constituyentes del opio, la morfina, fue aislado en 1803 por el
farmacéutico alemán Sertürner.
El
comportamiento de la morfina como analgésico es impresionante, ya que además de
calmar el dolor, causa euforia, regula la respiración y es antidiarreico. Es un
analgésico tan poderoso que se usa en las últimas fases del cáncer.
Como
contrapartida de las maravillosas propiedades de la morfina, se tiene la de
crear dependencia. La persona que fue tratada con ella desea volver a tener la
experiencia obtenida con la inyección. La repetición de la inyección crea
necesidad y cuando esta necesidad no se satisface, el sujeto sufre de los
síntomas que la morfina alivió: dolor abdominal, diarrea, respiración agitada,
taquicardia, náuseas, sudor y otros dolores.
La
pregunta es, ¿por qué un producto vegetal tiene tan notables efectos en el
sistema nervioso? La respuesta se dio en los años setenta: las propiedades de
la morfina deben derivar de su estructura y configuración; cualquier alteración
de ésta hace cambiar drásticamente sus propiedades; es decir, se requiere
precisamente la configuración natural para que encaje en receptores de las
neuronas cerebrales.
Existe
un gran número de receptores de morfina en partes del sistema nervioso
involucrados en la transmisión del dolor y en la parte responsable de las
emociones.
DESCUBRIMIENTO DEL FUEGO
El
cerebro del hombre crece, piensa, memoriza, aprende nuevas cosas hasta que un
día, cuando menos se lo espera, descubre el fuego, aprende a dominarlo y transmite
el conocimiento de generación en generación.
Precisamente
un paso fundamental en el dominio de la naturaleza lo dio el hombre primitivo
cuando aprendió a dominar el fuego; en ese momento encontró la manera de
liberar a voluntad la energía que los vegetales habían tomado de la radiación
solar y acumulado en forma de materia orgánica. Ahora el hombre tenía la luz y
el calor y su vida era más fácil, ya que dominaba la oscuridad y el frío de la
noche y al mismo tiempo ahuyentaba a los animales peligrosos.
El
fuego es la primera reacción química que el hombre domina a voluntad; en esta
importante reacción exotérmica se libera, en forma rápida, la energía que el
organismo animal liberaba de los alimentos en forma lenta e involuntaria. El
hombre aprendió a iniciar la reacción o a avivarla aumentando el oxígeno al
soplar sobre las brasas en contacto con leña seca, y más tarde supo iniciarlo
con chispas y por fricción.
Una
vez controlado el fuego, el hombre lo pudo aplicar, primero, al cocimiento de
alimentos, y más tarde a la fabricación de utensilios de arcilla, endurecidos
por el fuego.
Quizá el arte surgió poco después del dominio
del fuego, pues el carbón que queda al apagarse las fogatas es un material
apropiado para el dibujo; si éste se mezcla con la grasa de animales se hace
más versátil.
En
lugares aislados de la Tierra se fueron sucediendo descubrimientos importantes
al usar las piedras para soportar objetos junto al fuego: algunas de ellas se
fundieron y liberaron metales. Así, el hombre fue avanzando de la Edad de la
Piedra a la Edad de los Metales (Edad del Bronce). El fuego condujo al
conocimiento de los primeros elementos químicos: el oro, el plomo, el cobre, el
estaño, el azufre y el carbón.
Con el
dominio del fuego los ritos mágicos fueron más impresionantes: el hombre quemó
hierbas aromáticas cuyos componentes químicos muchas veces tuvieron propiedades
curativas. Más tarde, al disponer de recipientes de arcilla pudo hacer
infusiones de plantas, obteniendo así algunas sustancias curativas.
Al
hervir sus infusiones, el vapor de agua arrastró las sustancias volátiles insectos,
desinfectaban y curaban a los enfermos.
Las
infusiones ricas en azúcares, al ser abandonadas muchas veces eran fermentadas,
produciendo sustancias como alcohol o ácido acético, y de esa manera se
descubrieron la cerveza, el vino y el vinagre en épocas muy remotas.
Indudablemente, mientras más tiempo ha durado
un objeto inanimado, su aspecto más se deteriora. Así, por ejemplo, los objetos
de hierro que fueron bellos y brillantes, pronto pierden su brillo y tarde o
temprano se cubren de la herrumbre que los corroe; los objetos de hule se
vuelven quebradizos; lo mismo pasa con los bellos objetos de piel, que con el
tiempo se deterioran volviéndose quebradizos porque se avejentan. Procesos
todos ellos en que mucho tiene que ver el oxígeno: el hierro se oxida con el
tiempo, al igual que el hule y el cuero que lo fueron en su proceso de
envejecimiento. El aspecto de los seres vivos cambia también con el tiempo: se
hacen viejos. El tiempo que se mide por el número de días, meses y años
transcurridos, bien podría medirse por el número de respiraciones o por el
volumen de oxígeno que ha usado el cuerpo desde su nacimiento hasta su muerte.
El
hule de las llantas envejece, lo que se retarda con la vulcanización y adición
de antioxidantes; los aceites y grasas se hacen rancios por efecto del oxígeno
del aire, proceso que se logra detener por adición de antioxidantes como el
tocoferol (vitamina E) y el ácido ascórbico o vitamina C, entre los de origen
natural, que son muy importantes.
Los
radicales libres están implicados en el proceso del envejecimiento del ser
humano. Un intermediario clave es el superóxido O-O , formado por reducción del
02 molecular por varios reductores in vivo.
Los
antioxidantes son importantes en el tejido canceroso en donde la concentración
de tocoferol es mayor que en tejido normal. Son también importantes en la
prevención de oxidación de lípidos en los tejidos.
El
envejecimiento biológico puede ser debido al ataque de radicales hidroxilo H O. sobre las células no regenerables del
cuerpo. Estos radicales pueden provenir de generación indeseable en la cadena
alimenticia o por irradiación ultravioleta u otra radiación de alta energía.
Se puede entonces pensar que los antioxidantes detendrán
el envejecimiento; el problema es que muchos antioxidantes sintéticos, aunque
más eficaces in vitro que los biológicos, producen reacciones
secundarias indeseables en el organismo.
narcotizantes y su consumo puede provocar dependencia. El opio sirve para hacer calmantes
muy poderosos que son usados por granes cantidades por los pacientes enfermos de cáncer y otras enfermedades que producen dolores que están por encima del nivel de los analgésicos comunes. Este capitulo también habla del envejecimiento del hombre de manera científica
V. Importancia de las
plantas en la
vida del hombre:
Usos mágicos
y medicinales.
Una vez
que el hombre aprendió a dominar el fuego, estuvo en condiciones de fabricar
recipientes de arcilla, los que, endurecidos por el fuego, le servirán para
calentar agua, cocinar alimentos y hacer infusiones mágicas y medicinales. De
esta manera los aceites esenciales arrastrados por el vapor de agua
aromatizaban la caverna y se condensaban en el techo, con lo que se separaban
las sustancias químicas contenidas en las plantas. El químico primitivo
encontró que los aceites esenciales no solo tenían olor agradable, sino que
muchos de ellos tenían además propiedades muy útiles, como eran las de
ahuyentar a los insectos y de curar algunas enfermedades.
El conocimiento de las plantas y sus
propiedades seguía avanzando: ya no sólo las usaba el hombre como alimentos,
combustible y material de construcción, sino también como perfume, medicinas y
para obtener colorantes, que empleaba tanto para decorar su propio cuerpo y sus
vestiduras, como para decorar techo y paredes de su cueva. El arte pictórico
floreció en ese entonces en muchas partes del mundo y actualmente nos asombran
sus manifestaciones conservadas en oscuras cavernas, donde con frecuencia se
ven escenas de cacería. Es evidente que la necesidad de alimentación era
primordial y que los testimonios del uso medicinal de las plantas son menos
frecuentes; sin embargo, los chinos han dejado constancias escritas desde hace
más de 4 000 años acerca del uso antimalárico de la droga chaáng shan que
corresponde a la planta Dichroa febrifuga, Lour. Los estudios
modernos han demostrado la existencia en esa planta del alcaloide antimalárico
llamado febrifugina.
Los pueblos americanos tenían a la llegada de los españoles un amplio conocimiento de las plantas y sus propiedades, especialmente medicinales. Tan impresionante era la variedad de plantas que crecían en el nuevo mundo y tan notable el conocimiento que de ellas tenían los pueblos nativos que lograron interesar vivamente al rey de España.
La primera obra que se conoce al respecto es
debida al médico indígena Martín de la Cruz, quien la escribe en lengua náhuatl
durante el año de 1552. La traducción al latín hecha por Juan Badiano,
denominada Libellus de medicinalibus indorum herbis, se conoce
gracias a que Charles Upson Clark la encontró en la Biblioteca Barberini
durante los estudios que realizó en Roma de 1916 a 1919.
Este opúsculo consta de bellas ilustraciones
al estilo de los antiguos artistas indígenas confeccionadores de códices (tlacuilos).
Sobre las ilustraciones viene el nombre de la planta y debajo se encuentra el
nombre de la enfermedad que cura, seguida de una receta detallada conteniendo
el modo de administrarse.
El rey de España, Felipe II, al tener
noticias de que en la Nueva España existían más plantas y semillas medicinales
que en ninguna otra parte del mundo, envió a Francisco Hernández,
"protomédico e historiador general de las Indias, Islas y tierra firme del
mar océano", para que emprendiera una investigación médico-botánica en los
vastos territorios recientemente incorporados a la Corona.
Francisco Hernández llega al Nuevo Mundo con
las instrucciones de identificar todas las yerbas, árboles y plantas medicinales
que hubiere en la provincia donde se encontrase y de averiguar qué enfermedades
curaban y la manera de hacerlo.
Este estudio culminó con la descripción de 3
076 plantas y sus usos medicinales. Francisco Hernández no se limitó al estudio
de plantas, sino que hizo también un amplio recuento de los animales y
minerales de la Nueva España.
Los estudios de los minerales de la Nueva
España sentaron la base del impresionante auge de la industria metalúrgica
mexicana, especialmente en el ramo de metales preciosos. La descripción del
chapopotli señala por primera vez la existencia de petróleo en el territorio de
la actual República Mexicana.
Los estudios botánicos, por su parte,
sirvieron de base a estudios posteriores por medio de los cuales ha sido
posible la identificación botánica de más de mil de las plantas descritas por
Francisco Hernández.
DROGAS
ESTIMULANTES CON FINES MÁGICOS Y RITUALES
Muchas plantas fueron utilizadas en ritos
mágico-religioso y muchas de
El peyote, empleado por los pueblos del
Noroeste, se sigue usando en la actualidad y se le considera una planta divina.
Cuando este cactus es comido, da resistencia contra la fatiga y calma el hambre
y la sed, además de hacer entrar al individuo a un mundo de fantasías, que lo
hace sentir la facultad de predecir el porvenir. En busca de tan maravillosa
planta los huicholes hacen peregrinaciones anuales, desde sus hogares en el
norte de Jalisco y Nayarit, hasta la región desértica de Real de Catorce en San
Luis Potosí, que es donde crece este cactus. Los efectos del peyote duran de
seis a ocho horas y terminan de manera progresiva hasta su cese total.
Su empleo entre los indígenas no se debe a
hábito, sino que obedece a ritos religiosos. El principio activo del peyote (Anhalonium
Williamsi) es el alcaloide llamado mescalina.
OLOLIUQUI
La planta mexicana llamada ololiuqui por los mexicas corresponde, según los estudios botánicos recientes, a la enredadera Turbina corymbosa, de la familia Convolvulácea. El ololiuqui tenía un amplio uso mágico-religioso en el México prehispánico. Según los primeros escritos posteriores a la conquista la semilla molida era usada, mezclada con otros vegetales, para ungir a sacerdotes indígenas, quienes pretendían adquirir la facultad de comunicarse con sus dioses.
La planta mexicana llamada ololiuqui por los mexicas corresponde, según los estudios botánicos recientes, a la enredadera Turbina corymbosa, de la familia Convolvulácea. El ololiuqui tenía un amplio uso mágico-religioso en el México prehispánico. Según los primeros escritos posteriores a la conquista la semilla molida era usada, mezclada con otros vegetales, para ungir a sacerdotes indígenas, quienes pretendían adquirir la facultad de comunicarse con sus dioses.
Las propiedades medicinales del ololiuqui han
sido mencionadas por Francisco Hernández, quien dice que es útil contra la
gota. Por su parte, Acosta dice que la planta untada alivia las partes
enfermas, por lo que se le llamó medicina divina.
Albert Hoffmann encontró en 1960 alcaloides
del tipo del ácido lisérgico. Entre ellos obtuvo, en forma cristalina, la amida
del ácido lisérgico y su epímero, la amida del ácido isolisérgico, ambos con
fórmula C16H17ON3, además del
alcaloide de hongos, la chanoclavina. Los mismos alcaloides se encontraron en
otra convolvulácea, la Ipomea tricolor.
Hoffmann ensayó las amidas del ácido
lisérgico y del ácido isolisérgico, pero no encontró en ellos propiedades
alucinógenas, pues sólo le produjeron cansancio, apatía y somnolencia.
HONGOS
Ciertos hongos fueron usados con fines rituales en varias regiones del territorio mexicano y la práctica continúa también hasta nuestros días. El escrito más antiguo al que se tiene acceso se debe a André Thevet, L'histoire du Mechique (1973), basada en la obra perdida de Andrés Olmos (1543), Antigüedades mexicanas.
Ciertos hongos fueron usados con fines rituales en varias regiones del territorio mexicano y la práctica continúa también hasta nuestros días. El escrito más antiguo al que se tiene acceso se debe a André Thevet, L'histoire du Mechique (1973), basada en la obra perdida de Andrés Olmos (1543), Antigüedades mexicanas.
Un testimonio del uso que se daba a los
hongos en diferentes regiones de México y de la determinación que tenían las
autoridades civiles y religiosas de eliminar tales prácticas ha llegado clara y
precisa hasta nosotros gracias a la historia narrada por Jacinto de la Serna en
su Manual de Indias para el conocimiento de su idolatría y extirpación
de ella, capítulo IV, 1556.
La flora sudamericana no se queda atrás de la
mesoamericana y como ejemplo bastará mencionar el caso del llamado curare, un
preparado obtenido a partir de diversas plantas y usado como veneno de flechas.
CURARE
La
palabra curare es una adaptación al español de una frase que en la lengua de
una de las tribus sudamericanas significa "matar aves".
Es un extracto acuoso de varias plantas,
entre las que se encuentran generalmente especies de Chondodendron
cissampelos y Strychnos.
Para su preparación, el brujo de la tribu
hace hervir por varias horas en una olla de barro los diferentes vegetales; el
agua que se pierde por evaporación es sustituida por adición de más agua;
mientras se mantiene la ebullición se agita la mezcla y se agregan otras
sustancias venenosas como hormigas y colmillos de serpiente. Cuando el extracto
adquiere cierta consistencia y color, el brujo considera que ya está listo; lo
hace saber a los asistentes a la ceremonia, y cesan la música y el baile que
había acompañado todo el proceso de preparación del curare. Se reparte a los
allí presentes un poco de la sustancia recién preparada para su uso en la
cacería.
Con este material impregnarán las puntas de
flecha y dardos de cerbatanas para cazar animales pequeños; cuando éstos son
heridos, aunque sea ligeramente, morirán por efecto del veneno. La carne de
estos animales se puede consumir sin peligro de intoxicación, como lo demuestra
la experiencia de siglos.
Entre las plantas venenosas que con mucha
frecuencia se emplean en la preparación del curare se encuentran diversas
especies de Strychnos. Estas plantas son muy venenosas debido
a que contienen, entre otros alcaloides, la estricnina, sustancia tóxica que se
usa para exterminar roedores y para matar animales de pieles finas. Cuando un
ser humano u otro mamífero es envenenado con curare, comienza por perder el
habla, después se le paralizan los miembros y los músculos faciales, hasta que,
finalmente, le llega la muerte.
La flora sudamericana es rica en plantas
medicinales. Los polvos de corteza de quina adquirieron gran fama como medicina
antimalárica después de que la marquesa de Chinchón, esposa del virrey del
Perú, fue curada de paludismo con esa droga. El género de plantas andinas
antipalúdicas fue llamado Cinchona y la medicina fue introducida a Europa desde
1640.
Como este medicamento, muchos otros de origen
vegetal fueron usados por el hombre; aunque por ser variable el contenido del
principio activo, era difícil su dosificación. Es por esto que cuando en la
Edad Media se daba de beber a los acusados infusiones de dedalera(Digitalis
purpurea) para ejecutar los juicios de Dios, no todos los acusados
morían. Los que se salvaban, debido probablemente a que la planta por alguna
razón tenía poco principio activo, eran considerados inocentes.
Tuvieron que pasar muchos años antes de que
se pudieran aislar los principios activos al estado puro, para así poder
dosificarlos bien.
No fue sino hasta finales del siglo XVIII
(1772-1777) que Lavoisier demostró que el aire está constituido por nitrógeno y
oxígeno, y que en la combustión el oxígeno se combina con el carbono de las
sustancias orgánicas para dar bióxido de carbono y agua.
Basado en este descubrimiento, Lavoisier
elaboró un método para analizar los compuestos orgánicos. Para saber cuántos
átomos de carbono tenía una molécula, bastaba medir cuidadosamente el CO2 producido,
y de la cantidad de agua obtenida, se calcularía el número de hidrógenos en la
molécula. Los estudios de Lavoisier crearon las condiciones apropiadas para que
naciera la química de productos naturales. Los principios
activos contenidos en plantas curativas conocidas desde la Antigüedad
comenzaron entonces a ser aislados y a ser establecida su fórmula. En 1805, el
farmacéutico alemán Sertürner aisló la morfina del opio. En 1820, Pelletier y
Caventou aislaron de la quina los alcaloides quinina y cinchonina. Por la misma
época, otros principios activos fueron aislados y analizados en cuanto a su
contenido de carbono, oxígeno y algunos otros elementos como nitrógeno.
Las investigaciones químicas siguieron así
perfeccionando sus conocimientos y ya no se conformaban con efectuar un simple
análisis que encontrara cuántos átomos de cada elemento existen en la molécula,
si no que querían saber cómo estaban acomodados, es decir la estructura de cada
compuesto. Al principio esto era muy lento. Por ejemplo, para la determinación
de la estructura de un compuesto tan simple como el alcanfor, cuya fórmula
empírica C10H16O, encontrada por Dumas, se
necesitó emplear 60 años de arduo trabajo. Más aún, en la determinación
estructural de una sustancia más complicada como la quinina, se invirtieron más
de100 años.
Sin embargo, con el tiempo los químicos
adquirieron día tras día más habilidad en el aislamiento, purificación y
determinación estructural de productos naturales.
Se dispuso de esta manera de sustancias
medicinales puras, cuya administración se podía hacer con eficiencia. Sin
embargo, a nadie se le ocurría intentar su síntesis, procedimiento que hubiese
abaratado muchos de los productos y daría más seguridad al consumidor, que ya
no dependería tanto de los monopolios ejercidos por los países productores.
Nadie pensaba en sintetizar estas sustancias
naturales porque en aquel tiempo se creía que para que dichos compuestos se
formaran era indispensable una fuerza vital, es decir que sólo se podían formar
dentro de organismos de seres vivos y lo único que el hombre podía hacer era
aislarlos.
No fue sino hasta 1828 cuando el químico
Friedrich Wöhler, en el curso de un experimento con el compuesto considerado
mineral, isocianato de amonio, obtuvo su transformación en el compuesto natural
urea.
Este experimento demostraba que la síntesis
de compuestos orgánicos era posible de llevar a cabo por el ser humano, quien
sólo requería de habilidad y conocimiento.
Han pasado ya cerca de 200 años desde que se
inició la química de productos naturales y, sin embargo, sólo
alrededor del 10% de las ± 500 000 especies de plantas que viven sobre la
Tierra han sido estudiadas en busca de principios activos.
Tan escaso número de estudios farmacológicos
es debido probablemente al hecho de que el trabajo es complicado y muchas veces
decepcionante. Es frecuente estudiar una planta a la que se le atribuyen
interesantes propiedades medicinales y no poder aislar el principio activo,
quizá porque éste es lábil al estado puro, quizá porque su actividad sólo se
presenta en unión de otros componentes de la planta. En fin, existen numerosos
problemas que hacen lento el estudio de principios activos.
Es necesaria la participación de diversos
especialistas botánicos expertos en taxonomía, químicos que realicen el
aislamiento y purificación de los metabolitos secundarios, además de realizar
estudios espectroscópicos, que ayudarán a establecer las estructuras.
Posteriormente se necesitarán estudios farmacológicos y otros más.
No obstante lo relativamente limitado de los
estudios fitoquímicos, existe una gran proporción de medicamentos en los que
intervienen productos naturales de origen vegetal. En 1973, del número total de
prescripciones médicas administradas en Estados Unidos, más de 40% contenían
productos naturales, entre los que predominaban los de naturaleza esteroidal,
seguidos por varios alcaloides como la codeína. La quinina sigue usándose en la
actualidad a pesar de la competencia que representan las numerosas drogas
sintéticas.
Pero siguiendo con la historia de la quina,
es interesante mencionar que las principales plantaciones de quina se localizan
en la actualidad en el sureste de Asia. En México se iniciaron en 1941
plantaciones de 600 hectáreas de la finca Guatimoc, del Estado de Chiapas, con
semillas traídas precisamente del sureste de Asia. Esas plantaciones quedaron
abandonadas y constituidas por árboles muy viejos de bajo contenido de
alcaloides, formando una mezcla dentro de la cual existe poca quinina.
Por lo general, cuando el químico aísla y
determina la estructura de una sustancia con propiedades interesantes, y sobre
todo si su precio es alto, se intenta su síntesis, al mismo tiempo que se
ensayan productos sintéticos que, aunque con distinta estructura, tengan
actividad similar.
Durante la segunda Guerra Mundial, cuando los
japoneses tomaron los territorios productores de quina, el ejército
estadounidense se vio sin protección contra la amenaza que representaba la
malaria, presente en los territorios del Pacífico Sur. De entre las miles de
drogas sintéticas que se probaron, la atabrina fue muy eficiente, por lo que se
administró como protección al ejército contra la enfermedad, con el
inconveniente de que al mismo tiempo que brindaba protección contra la malaria,
producía pigmentación amarilla a la piel, razón por la cual la gente que peleó
en el sureste de Asia regresaba con la piel amarilla, intrigando a parientes y
amigos que se impresionaban pensando que los soldados se habían orientalizado.
ZOAPATLE,
CIHUAPALLI (MEDICINA DE MUJER)
Otra planta con una larga historia en su uso medicinal es el zoapatle. Esta planta era utilizada por las mujeres indígenas para inducir al parto o para corregir irregularidades en el ciclo menstrual. En la actualidad, su empleo sigue siendo bastante extendido con el objeto de facilitar el parto, aumentar la secreción de la leche y de la orina y para estimular la menstruación.
El estudio de esta planta es un ejemplo
típico de las dificultades con que se encuentran quienes emprenden un estudio
químico de una planta medicinal.
Los estudios químicos del zoapatle se
comenzaron a realizar desde fines del siglo pasado, aunque el aislamiento de
sus productos puros no se efectuó sino hasta 1970, cuando se obtuvieron de la
raíz varios derivados del ácido kaurénico. En 1971 se aislaron lactonas
sesquiterpénicas y a partir de 1972 se inician estudios que culminan con el
aislamiento de los diterpenos activos llamados zoapatanol y montanol. Las
patentes para la obtención de estos productos fueron adquiridos por la compañía
farmacéutica estadounidense Ortho Corporation. La síntesis de zoapatanol fue
llevada a cabo en 1980.
De otras especies de Montanoa conocidas
también como zoapatle, y usadas con el mismo fin, se han aislado diterpenos con
esqueleto de kaurano, tales como el ácido kaurénico, al que se le han
encontrado propiedades relajantes de la actividad uterina.
Hoy en día en los mercados de plantas
medicinales se venden como Zoapatle varias especies de Montanoa: M.
tomentosa, M. frutescens y M. floribunda.
Los estudios de plantas usadas desde la época
precortesiana son ya muchos, pero la tarea es aún larga, puesto que el legado
de nuestros antepasados es muy grande.
Este capitulo me agradó ya que me dió a conocer diferentes plantas medicinales capaces de poder curar o ayudar al ser humano a sanar. ya sea de alguna enfermedad o alguna lesión corporal, como por ejemplo la Zoapatle Cihuapalli.
Nos habla tambien de como nuestros ancestros usaban las plantas para algunos rituales o para ayudar a la gente enferma.
VI. Fermentaciónes,
pulque, colonche, tesguino,
pozol y modificaciones químicas.
MUCHOS microorganismos
son capaces de provocar cambios químicos en diferentes sustancias,
especialmente en carbohidratos. Es de todos conocido el hecho de que al dejar
alimentos a la intemperie en poco tiempo han alterado su sabor y, si se dejan
algún tiempo más, la fermentación se hace evidente comenzando a desprender
burbujas como si estuviesen hirviendo. Esta observación hizo que el proceso
fuese denominado fermentación (de fervere, hervir). Esta reacción,
que ocurre en forma espontánea, provocada por microorganismos que ya existían o
que cayeron del aire, hacen que la leche se agrie, que los frijoles se aceden y
otros alimentos se descompongan, y que el jugo de piña adquiera sabor agrio y
llegue a transformarse en vinagre.
Estos
hechos fueron conocidos desde las épocas más remotas, siendo quizá la
fermentación el proceso químico más antiguo que el hombre pudo controlar. Éste
observó que las uvas con el tiempo adquirían un cierto sabor al que llegó a
aficionarse; así, el vino llegó a producirse en la región del Tigris y en
Egipto desde hace ya varios miles de años. Los mercaderes griegos llevaron la
uva y su cultivo a Marsella desde 600 años a.C. y su cultivo se extendió hasta
el Rin desde 200 años a. C.
El
vino se convirtió en la bebida preferida de los pueblos mediterráneos, quienes
la conservan hasta hoy y la han extendido a todo el mundo.
PULQUE
El pulque fue en Mesoamérica lo que el vino fue para los pueblos mediterráneos.
El
pulque fue una bebida ritual para los mexicas y otros pueblos mesoamericanos.
Era la bebida que se daba en las bodas, que se les daba a beber a los guerreros
vencidos que iban a ser inmolados, la que se usaba en importantes ceremonias
religiosas, etc. Estuvo tan arraigada en la cultura autóctona, que no bastaron
300 años de esfuerzos de las autoridades coloniales para eliminar su consumo,
ni han bastado tampoco 176 años de esfuerzos de la sociedad independiente por
desprestigiarla y tratar de sustituirla por otras bebidas obtenidas por
fermentación, muy altamente prestigiadas por ser originarias de los pueblos
europeos, cuya cultura se ha impuesto, como la cerveza y el vino, que cuentan
con los medios masivos de comunicación para exaltar sus virtudes y el buen
gusto que implica el consumirlas y ofrecerlas. A pesar del constante bombardeo
propagandístico de los medios de comunicación, no se ha logrado eliminar la
práctica ancestral de consumir pulque en las comunidades rurales y, todavía en
escala significativa, en las ciudades.
El
pulque es el producto de la fermentación de la savia azucarada o aguamiel, que
se obtiene al eliminar el quiote o brote floral y hacer una cavidad en donde se
acumula el aguamiel en cantidades que pueden llegar a seis litros diarios
durante tres meses.
Para
recogerlo se utiliza el acocote, que es una calabaza alargada que sirve como
pipeta de grandes proporciones.
El
aguamiel se consume directamente, siendo una bebida de sabor agradable que
contiene alrededor de 9% de azúcares (sacarosa). Se puede beber cruda o
hervida. Cuando se consume cruda existe el peligro de que las saponinas que
contiene, al tocar la piel junto a la boca, la irriten produciendo ronchas.
Los
mexicas, en su peregrinación desde Aztlán o Lugar de las Garzas, en busca de
Tenochtitlán, aprendieron a fermentar este jugo azucarado al que atribuyeron propiedades
mágicas.
Esta
bebida, llamada octli, tuvo una gran importancia a juzgar por los testimonios
pintados en diversos códices.
A la
llegada de los españoles, este vino blanco perdió, junto con su nombre (octli),
su categoría y pasó, con el nombre de pulque, a ser la bebida de los pobres,
quienes han mantenido su afición a él hasta nuestros días.
El
nombre pulque con el que los españoles denominaron a esta
bebida da idea de la degradación en categoría que sufrió, ya que, según Núñez
Ortega, este nombre deriva depoliuqui, que significa descompuesto. Posiblemente
impresionó a los conquistadores oír exclamar a los indígenas, cuando se les
daba un pulque de mala calidad, octli poliuqul, es decir pulque
malo o descompuesto, de manera que el adjetivo
aplicado a la bebida descompuesta fue lo que pasó al español, en vez del octli,
que era el nombre de la bebida.
El
pulque, a pesar de los intentos por erradicar su consumo, sigue siendo
utilizado hasta nuestros días y forma parte importante del folklore mexicano.
MANUFACTURA
DEL PULQUE
El procedimiento tradicional, que data desde las épocas prehispánicas, consiste en recoger el aguamiel y colocarlo en un recipiente de cuero, donde se lleva a cabo la fermentación provocada por la flora natural del aguamiel. Esto constituye la semilla con la que se inocularán las tinas de fermentación, también de cuero, con capacidad de aproximadamente 700 litros.
El procedimiento tradicional, que data desde las épocas prehispánicas, consiste en recoger el aguamiel y colocarlo en un recipiente de cuero, donde se lleva a cabo la fermentación provocada por la flora natural del aguamiel. Esto constituye la semilla con la que se inocularán las tinas de fermentación, también de cuero, con capacidad de aproximadamente 700 litros.
Conforme
la fermentación avanza, es controlada por catadores que vigilan la viscosidad y
sabor para determinar el momento en que se debe suspender. Una vez hecho esto,
se envasa el pulque en barriles de madera y se distribuye en los expendios
llamados pulquerías.
El
pulque es una bebida blanca con un contenido alcohólico promedio de 4.26%.
Entre los principales microorganismos que intervienen en la fermentación se
cuentan elLactobacillos sp. y el Leuconostoc, que
son los que provocan la viscosidad, y laSaccharomyces carbajali, que
es la levadura responsable de la fermentación alcohólica.
El
pulque es elaborado con la savia del Agave atrovirens. Otros
agaves son aún más ricos en azúcares y por lo tanto productores de materias
primas susceptibles de ser fermentadas.
Por
ejemplo, el Agave tequilana, del que se obtiene la bebida
alcohólica llamada tequila, es una planta con un alto contenido de azúcares en
todas sus partes, especialmente en su tallo o piña, que es donde se acumulan
los azúcares de reserva en forma de fructosanas, de las que llega a obtener
entre 15 y 25%. Este alto contenido de azúcares hace a la planta útil no sólo
en la elaboración del tequila, sino también en otras fermentaciones.
OTRAS
BEBIDAS MEXICANAS OBTENIDAS POR FERMENTACIÓN
Colonche
Se conoce como colonche a la bebida alcohólica roja de sabor dulce obtenida por fermentación espontánea del jugo de tuna, especialmente de la tuna cardona (Opuntia streptacantha).
El
colonche se prepara para el consumo local de los estados donde es abundante el
nopal silvestre, como son Aguascalientes, San Luis Potosí y Zacatecas.
El
procedimiento que se sigue para su elaboración no ha cambiado, aparentemente,
desde hace miles de años. Las tunas se recolectan en el monte, se pelan y
enseguida se exprimen y cuelan a través de un cedazo de ixtle o paja para
eliminar las semillas. El jugo se hierve y se deja reposar para que sufra la
fermentación espontánea. En ocasiones se agrega un poco de colonche para
acelerar la fermentación. Se pueden agregar al jugo también algunas de las
cáscaras de la tuna, ya que son éstas las que contienen los microorganismos que
provocan la fermentación.
El
colonche recién preparado es una bebida gaseosa de sabor agradable que con el
tiempo adquiere sabor agrio.
Los
estudios de Ulloa y Herrera señalan que la fermentación del jugo de tuna se
debe, entre otros microorganismos, a una bacteria y a la levadura Torulopsis
taboadae, que es la primera levadura aislada del colonche, lo que
indica la poca atención que se ha prestado a las bebidas netamente mexicanas.
El
tesgüino es una bebida consumida en las comunidades indígenas y por la
población mestiza de varios estados del norte y noroeste de México.
Entre
los pueblos indígenas el tesgüino tiene un importante uso ceremonial, puesto
que se consume en celebraciones religiosas, en funerales y durante sus juegos
deportivos.
Para
su preparación, el maíz se remoja durante varios días, se escurre y luego se
deja reposar en la oscuridad para que al germinar produzca plántulas blancas de
sabor dulce. El maíz germinado, preparado de esta manera, se muele en un
metate; enseguida se hierve hasta que adquiere color amarillo, se coloca en un
recipiente de barro cocido y se deja fermentar. Para lograr la fermentación, se
agregan varias plantas y cortezas, dejando la mezcla en reposo por varios días
antes de servirla para su consumo.
Pozol
El pozol es maíz molido y fermentado que al ser diluido con agua produce una suspensión blanca que se consume como bebida refrescante y nutritiva. Se puede agregar a la bebida sal y chile molido, azúcar o miel según el gusto o los fines a que se destine.
El pozol es maíz molido y fermentado que al ser diluido con agua produce una suspensión blanca que se consume como bebida refrescante y nutritiva. Se puede agregar a la bebida sal y chile molido, azúcar o miel según el gusto o los fines a que se destine.
El
pozol se consume durante las comidas o como refresco a cualquier hora del día.
Los indígenas de Chiapas o de otros estados del Sureste lo llevan como
provisión antes de emprender un viaje o antes de iniciar su jornada de trabajo.
Preparación: Para
la obtención del pozol se prepara una masa de maíz, siguiendo el mismo
procedimiento que se utiliza para la preparación de las tortillas. Veamos en
que consiste éste.
El
maíz se hierve en agua de cal aproximadamente al 10%. El maíz cocido, llamado
nixtamal, se escurre y se lava con agua limpia. El nixtamal limpio se muele en
metate o en un molino hasta obtener una masa con la que se hacen bolas que se
envuelven en hojas de plátano para mantener la humedad. En esta forma se deja
reposar por varios días para que la fermentación se lleve a cabo. Dependiendo
del tiempo en que ésta se realice, variará el gusto del producto final.
El
pozol es un mejor alimento que el maíz sin fermentar, ya que entre los
microorganismos responsables de la fermentación existen algunos fijadores del
nitrógeno atmosférico, como el Agrobacterium azotophilum, y
otros que le dan aroma y sabor, tales como los Saccharomyces cerevisae, que
son los que producen alcohol, y otros más que son los productores de ácido, que
ayudan a impartirle el sabor característico.
El
pozol es uno de los alimentos en que se conserva la antigua sabiduría de los
pueblos prehispánicos, pues al transformar el maíz en pozol se ayuda a su
conservación y se mejora su sabor y sus propiedades nutritivas, y esto debido a
la fijación del nitrógeno del aire que efectúan algunas de las bacterias
especializadas que contiene el pozol.
FERMENTACIÓN
ALCOHÓLICA
La fermentación alcohólica producida por levaduras ha sido utilizada por todos los diferentes pueblos de la Tierra.
En la
obtención industrial de etanol se usan diversos sustratos; entre ellos, uno de
los principales son las mieles incristalizables que quedan como residuo después
de la cristalización del azúcar en los ingenios.
Muchos
sustratos con alto contenido de azúcares y almidones se utilizan en la
preparación de bebidas alcohólicas como la cerveza, que tiene muy amplio
consumo en el ámbito mundial. Pero no sólo para la producción de alcohol o vino
se emplea la levadura, un empleo muy antiguo y actualmente generalizado en el
mundo entero es la fabricación de pan.
El uso
de la levadura en la fabricación del pan fue descubierto por los egipcios
varios siglos antes de Cristo. El historiador griego Herodoto menciona su
empleo en las panaderías egipcias desde 500 años antes de Cristo.
Al
mezclarse la levadura con la masa de harina se lleva a cabo una fermentación
por medio de la cual algunas moléculas de almidón se rompen para dar glucosa,
la que se sigue fermentando hasta dar alcohol y bióxido de carbono (CO2).
Es este gas el que esponja la masa de harina y hace que el pan sea suave y
esponjoso. De no haber puesto levadura, el pan hubiese tenido la consistencia
de una galleta. Junto con el alcohol se producen algunos ácidos que le imparten
al pan su muy apreciado sabor.
OTROS
PRODUCTOS OBTENIDOS POR
FERMENTACIÓN
Fermentación
láctica
La leche es fermentada por varios microorganismos tales como Lactobacillus casei, o por cocos como el Streptococcus cremoris, transformándose en alimentos duraderos como yogur y la gran variedad de quesos tan preciados en la mesa.
La leche es fermentada por varios microorganismos tales como Lactobacillus casei, o por cocos como el Streptococcus cremoris, transformándose en alimentos duraderos como yogur y la gran variedad de quesos tan preciados en la mesa.
La
acidez de la leche fermentada se debe al ácido láctico que se forma por la
transformación de los azúcares de la leche (de la lactosa). Este mismo tipo de
fermentación es el que sufre la col en la preparación del sauerkraut de tan
amplio consumo en la mesa de los pueblos europeos.
Las
fermentaciones pueden ser provocadas por muy diversos microorganismos, por lo
que las transformaciones pueden seguir distintos caminos y, por lo tanto,
obtenerse diferentes productos, tales como ácido butírico, butanol, acetona,
isopropanol, ácido propiónico y muchos otros más.
El
químico se ha dado cuenta de la gran utilidad que pueden prestar los
microorganismos al efectuar transformaciones de un producto en otro y sobretodo
al realizar cambios parciales en algunas moléculas, cambios que por medios químicos
son muy difíciles de llevar a cabo, debido a la necesidad de gastar mucho
tiempo y reactivos, además de obtener pobres rendimientos.
Muchas
de estas difíciles reacciones las realizan los microorganismos en poco tiempo y
con excelentes rendimientos.
La
primera transformación química en esteroides fue efectuada por Mamoli y
Vancellone en 1937. Ellos obtuvieron testosterona, la hormona masculina, a
partir de androstenolona. El proceso se hizo en dos pasos: primero, se efectuó
la oxidación de androstenolona por agitación de la sustancia finamente dividida
en suspensión en agua adicionada de fosfato. En esta suspensión la levadura
trabaja oxidando al esteroide por medio del oxígeno del aire durante dos días.
Segundo,
la androstenediona así obtenida se separa y se hace fermentar con levadura que
trabaja en una solución azucarada. En este paso el microorganismo reduce
selectivamente un carbonilo y produce la hormona masculina, la testosterona.
Así
pues, como en el ejemplo anterior, los microorganismos hacen oxidaciones y
reducciones selectivas para obtener sustancias tan valiosas como la hormona
testosterona.
El
grupo de investigación de los laboratorios Upjohn empleó en 1952 un cultivo del
hongoRhizopus nigricans para introducir un grupo alcohol (OH) a la
progesterona y producir la 11a-hidroxiprogesterona.
La
introducción del grupo hidróxido en la posición 11a de la progesterona es un paso clave en
la ruta hacia los corticoides, que son sustancias con importantes actividades
biológicas que las hacen útiles en medicina. Entre los corticoides más
conocidos podemos mencionar a la cortisona y a la dihidrocortisona.
Ambas
sustancias son útiles en el tratamiento de múltiples enfermedades, como
artritis reumatoide, inflamaciones de la piel, enfermedad de Addison, asma,
etcétera.
El uso
de los microorganismos en la obtención de nuevos productos y en la modificación
de algunas moléculas es tan amplia, que su descripción llena libros y grandes
colecciones especializadas. Aquí sólo hemos dado unos cuantos ejemplos que
quizá despierten el interés del lector que podrá acudir a ellas para obtener
mayor información.
Este capítulo habla principalmente sobre la fermentación que es un proceso bioquímico por el que una sustancia orgánica se transforma en otra, generalmente más simple, por la acción de un fermento
VII. Jabones,
saponinas y
detergentes.
Muchas veces hemos visto
maravillados cómo en una fría mañana invernal los patos nadan en el estanque
sin una aparente preocupación por ser mojados por las frías aguas; cuando por
fin dejan el estanque, simplemente se sacuden de las gotas superficiales y su
plumaje queda tan seco como antes de su contacto con el agua. Al observar las
aguas estancadas es frecuente ver insectos que con gran seguridad van y vienen
corriendo sobre la superficie del agua. Ambos fenómenos tienen que ver con el
hecho muy conocido de que el agua y el aceite no se mezclan.
Tanto el cuerpo del insecto como el plumaje de los patos
se encuentran cubiertos por una capa de grasa que los hace impermeables.
Cuando la ropa u otros objetos se manchan con grasa y
tratamos de lavarlos con agua sucederá lo mismo que con el plumaje de los
patos: el agua no moja a la mancha de aceite. El agua, por lo tanto, no sirve
para limpiar objetos sucios con aceites o grasas; sin embargo, con la ayuda de
jabón o detergente sí podemos eliminar la mancha de grasa.
Los aceites vegetales, como el aceite de coco
o de olivo, y las grasas animales, como el sebo, son ésteres de glicerina con
ácidos grasos. Por eso cuando son tratados con una base fuerte como sosa o
potasa se saponifican, es decir producen la sal del ácido graso conocida como
jabón y liberan glicerina. En el caso de que la saponificación se efectúe con
sosa, se obtendrán los jabones de sodio, que son sólidos y ampliamente usados
en el hogar. En caso de hacerlo con potasa, se obtendrán jabones de potasio, que
tienen consistencia líquida.
La reacción química que se efectúa en la fabricación de
jabón se puede representar en forma general como sigue:
Con frecuencia se agrega brea en el proceso de
saponificación obteniéndose así jabones en los que, junto con las sales de
sodio de ácidos grasos, se tendrá la sal de sodio de ácidos resínicos, lo que
los hace más solubles y más apropiados para lavar ropa. Evidentemente se podrán
obtener sales de ácidos grasos con otros metales, especialmente con calcio, ya
que el hidróxido más abundante y barato es la cal.
Ahora bien, si la saponificación se hace con cal, el producto será el jabón de
calcio. El problema es que este jabón es un
sólido duro e insoluble, por lo que no sirve para los fines domésticos a los
que se destinan los jabones de sodio.
Los jabones de sodio tienen un amplio uso en
nuestra civilización, por lo que la industria jabonera es una de las más
extensamente distribuidas en el mundo entero.
FABRICACIÓN DE
JABÓN
El proceso de fabricación de jabón es, a grandes rasgos, el siguiente: se coloca el aceite o grasa en un recipiente de acero inoxidable, llamado paila, que puede ser calentado mediante un serpentín perforado por el que se hace circular vapor. Cuando la grasa se ha fundido ±8Oº, o el aceite se ha calentado, se agrega lentamente y con agitación una solución acuosa de sosa. La agitación se continúa hasta obtener la saponificación total. Se agrega una solución de sal común (NaCl) para que el jabón se separe y quede flotando sobre la solución acuosa.
Se recoge el jabón y se le agregan colorantes, perfumes,
medicinas u otros ingredientes, dependiendo del uso que se le quiera dar. El
jabón se enfría y se corta en porciones, las que enseguida se secan y prensan,
dejando un material con un contenido de agua superior al 25%.
ACCIÓN DE LAS IMPUREZAS DEL AGUA SOBRE
EL JABÓN
Cuando el agua que se usa para lavar ropa o para el baño contiene sales de calcio u otros metales, como magnesio o fierro, se le llama agua dura.
Por tanto, cuando se utilizan aguas duras, la cantidad de
jabón que se necesita usar es mucho mayor, ya que gran cantidad de éste se
gasta en la formación de sales insolubles. Como consecuencia de ello, el jabón
no produce espuma hasta que todas las sales de calcio o magnesio se han gastado
produciendo una sustancia insoluble, la cual, además de su mal aspecto, une su
acción deteriorante de las telas, puesto que ese material duro queda depositado
entre los intersticios de los tejidos.
De la misma forma, cuando el agua dura se usa en
calderas, la sal de estos metales se adhiere a los tubos dificultando el
intercambio de calor y, por lo tanto, disminuyendo su eficiencia.
DETERGENTES
Los primeros detergentes sintéticos fueron descubiertos en Alemania en 1936, en lugares donde el agua es muy dura y por lo tanto el jabón formaba natas y no daba espuma. Los primeros detergentes fueron sulfatos de alcoholes y después alquilbencenos sulfonados, más tarde sustituidos por una larga cadena alifática, generalmente muy ramificada.
Los resultados fueron positivos, pues al usarse en agua
muy dura siguieron dando abundante espuma por no formar sales insolubles con
calcio y otros constituyentes de las aguas duras.
Dado que los detergentes han resultado ser tan útiles por
emulsionar grasas con mayor eficiencia que los jabones, su uso se ha
popularizado, pero, contradictoriamente, han creado un gran problema de
contaminación, ya que muchos de ellos no son degradables. Basta con ver los
ríos rápidos que llevan las aguas municipales para darse cuenta de cómo se
elevan en ellos verdaderas montañas de espuma. Para evitar esto, se han hecho
esfuerzos por sustituir la cadena lateral (R) ramificada por
una cadena lineal, la que sí sería biodegradable. Los detergentes son muy
variados, y los hay para muy diversos usos; simplemente, para ser efectivos en
las condiciones de temperatura que se acostumbran en el lavado industrial de
los distintos pueblos de la Tierra, tiene que variar su formulación.
El lavado industrial en Europa se acostumbra hacer a alta
temperatura, entre 90 y 95° Por su parte, en los Estados Unidos se hace entre
50 y 60°, mientras que en México se realiza a temperatura ambiente.
Las diferentes condiciones de temperatura en las que se
realiza el lavado trae problemas a los fabricantes de detergentes. Éstos deben
estar seguros de que el detergente se disuelve en agua a la temperatura
adecuada. Los detergentes más comunes en los Estados Unidos no son fácilmente
solubles en frío. Los agentes blanqueadores como el perborato, que funciona
bien en caliente, cuando se utiliza en frío tiene que ser reforzado con activadores,
pues en agua tibia los blanqueadores pierden eficiencia.
ENZIMAS
Estos materiales adquirieron gran popularidad en Estados Unidos y Europa en la década de los sesenta debido a su facultad de eliminar manchas proteicas o carbohidratos, aun en el remojo. Los detergentes con esta formulación son capaces de eliminar manchas de sangre, huevo, frutas, etcétera.
Estos materiales adquirieron gran popularidad en Estados Unidos y Europa en la década de los sesenta debido a su facultad de eliminar manchas proteicas o carbohidratos, aun en el remojo. Los detergentes con esta formulación son capaces de eliminar manchas de sangre, huevo, frutas, etcétera.
Con todo, estos detergentes han producido problemas de
salud en los obreros que trabajan en su elaboración. Por suerte, hasta ahora no
los han provocado en las amas de casa.
El problema con los obreros se debió principalmente a que
los detergentes producen polvo que, al ser aspirado, pasa a los pulmones. Esto
se ha resuelto fabricando detergentes con gránulos mayores, para que no
produzcan polvo.
Los fabricantes de detergentes de Europa y Japón están
poniendo enzimas en la mayor parte de sus productos.
Entre las sustancias que se agregan a los detergentes
para mejorar sus características se encuentran ciertas sustancias que protegen
a las telas contra la fijación del polvo del suelo o el atmosférico. Estas
sustancias, que mantienen a las telas limpias por más tiempo al evitar la
reimplantación del polvo, son sin duda de gran utilidad, pues evitan trabajo y
deterioro de la tela.
Una sustancia con esas propiedades es la
carboxi-metilcelulosa, que es eficiente en algodón y otras telas celulósicas,
pero falla con telas sintéticas.
Los ácidos carboxílicos secuestran la dureza del agua
reaccionando con las sales metálicas presentes en esas aguas.
El tripolifosfato de sodio es un excelente secuestrante y
por muchos años se ha usado con óptimos resultados. Por desgracia en los
Estados Unidos se empezaron a observar efectos de eutrofisación de las aguas,
por lo que su uso está siendo severamente restringido.
Lo mismo está sucediendo en Europa, donde también se han
descubierto daños por eutrofisación, fenómeno que consiste en el aumento de
nutrientes a un ritmo excesivo, por lo que al descomponerse la materia prima
orgánica que ingresa (detergentes), disminuye el oxígeno disuelto, alterando la
vida en las aguas.
La industria de jabones y detergentes que
contribuye a mantener a nuestro mundo libre de inmundicias, es muy grande. En
1984 fue de 24 millones de toneladas y tan sólo en América Latina se produjeron
2.7 millones de toneladas.
SAPONINAS
Las saponinas se han usado también como veneno de peces,
macerando en agua un poco del órgano vegetal que lo contiene, con la ventaja de
que los peces muertos por este procedimiento no son tóxicos.
Las saponinas producen hemolisis a grandes diluciones y
están constituidas por grandes moléculas orgánicas, como esteroides o triterpenos,
unidas a una o varias azúcares, por lo que contienen los elementos necesarios
para emulsionar la grasa: una parte lipofílica, que es el esteroide o
triterpeno, por medio del cual se unirá a la grasa, y una parte hidrofílica,
que es el azúcar, por medio de la cual se unirá al agua.
Entre las saponinas de naturaleza esteroidal son muy
importantes los glicósidos cardiacos, obtenidos de la semilla de la dedalera o Digitalis
purpurea. El extracto obtenido de estas semillas, que contienen una
mezcla de saponinas, es muy útil en el tratamiento de enfermedades del corazón.
Sin embargo, un exceso de estas sustancias es peligroso y puede causar incluso
la muerte. Debido a esto, las infusiones de dedalera se utilizaron en la Edad
Media en los juicios de Dios (ver capítulo v).
Los glucósidos cardiacos se encuentran no sólo en la
dedalera, sino que hay otras plantas que también las contienen, tales como las
distintas especies de la familia Asclepidacea.
Esta familia de plantas es rica en ellos, y su principal
característica es la producción de un jugo lechoso cuando se le cortan hojas o
tallos. Ha adquirido notoriedad por ser las plantas que alimentan a la mariposa
monarca en su estado larvario. De esta planta las mariposas toman los
glicósidos cardiacos que la volverán tóxica y por consiguiente desaniman a las
aves a que las consuman como alimento. Algunos de estos glicósidos son los que
se ilustran enseguida:
Entre las asclepidáceas que han interesado a los
investigadores se encuentra laCalotropis procera que crece en Asia
y en África. Es una planta venenosa que ha sido utilizada para la medicina
popular y como veneno de flechas, es decir, los nativos usan el látex venenoso
de la planta para impregnar los dardos. Así, en la práctica de la cacería, los
animales, aunque sean heridos muy levemente, mueren. La carne no representa
ningún problema, ya que la sustancia se descompone durante el cocinado, y si
algo llega al estómago, el ácido clorhídrico del jugo gástrico se encargará de
hidrolisarlo quitándole su toxicidad.
Las sustancias que contiene esta planta son una serie de
lactonas, entre las que se han podido caracterizar las llamadas calactina,
calotropina y las sustancias que contienen nitrógeno y azufre en su molécula,
como la voluscharina y la uscharina.
La hidrólisis de los glicósidos cardiotónicos de la
dedalera (Digitalis purpurea) elimina la parte hidrofílica constituida
por azúcares y deja en libertad la parte lipofílica que en este caso son los
esteroides digitoxigenin, digoxigenina y gitoxigenina, que además de que ya no
tienen propiedades detergentes, han perdido su actividad biológica
Los glicósidos cardiacos
son saponinas producidas también por otras plantas venenosas, entre ellas las
del género Strophantus. Por ejemplo, tenemos la strofantina,
que contiene glucosa, la cual, unida directamente al esteroide, contiene una
azúcar muy rara llamada cimarosa. La estrofantidina es un veneno muy activo,
capaz de matar en dosis tan bajas como 0.07 mg a un ratón de 20 gramos.
VIII. Hormonas vegetales
y animales, feromónas,
síntesis de hormonas a partir
de sustancias naturales
L
AS PLANTAS
no sólo necesitan para crecer agua y nutrientes del
suelo, luz solar y bióxido de carbono atmosférico. Ellas, como otros seres
vivos, necesitan hormonas para lograr un crecimiento armónico, esto es,
pequeñas cantidades de sustancias que se desplazan a través de sus fluidos
regulando su crecimiento, adecuándolos a las circunstancias. Cuando la planta
germina, comienzan a actuar algunas sustancias hormonales que regulan su
crecimiento desde esa temprana fase: las fitohormonas, llamadas giberelinas,
son las que gobiernan varios aspectos de la germinación; cuando la planta surge
a la superficie, se forman las hormonas llamadas auxinas, las que aceleran su
crecimiento vertical, y, más tarde, comienzan a aparecer las citocininas,
encargadas de la multiplicación de las células y que a su vez ayudan a la
ramificación de la planta.
EL MOVIMIENTO DE LAS PLANTAS
Es perfectamente conocido por todos el que las flores del girasol ven hacia el Oriente por la mañana y que voltean hacia el Poniente por la tarde, siguiendo los últimos rayos del Sol. Es también interesante observar cómo los colorines y otras leguminosas, cuando se ha ocultado el Sol, doblan sus hojas como si durmieran y cómo se enderezan a la mañana siguiente para recibir la luz del Sol. Más impresionante todavía quizá es el caso de la vergonzosa (Mimosa pudica). Esta bella, aunque pequeña planta, que tiene hojas pinadas, al más pequeño roce contrae sus hojas, aparentando tenerlas marchitas.
Todos estos movimientos de las plantas son provocados por sustancias químicas.
MENSAJEROS QUÍMICOS EN INSECTOS Y PLANTAS
Las alomonas son sustancias que los insectos toman de las plantas y que posteriormente usan como arma defensiva; las kairomonas son sustancias químicas que al ser emitidas por un insecto atraen a ciertos parásitos que lo atacarán, y las feromonas son sustancias químicas por medio de las cuales se envían mensajes como atracción sexual, alarma, etcétera.
Un ejemplo de alomona es la sustancia que la larva de la mosca de los pinos (Neodiprion sertifer) toma de los pinos en donde vive. Cuando ésta es atacada, se endereza y escupe una sustancia que contiene repelentes. Si el atacante persiste en su intento, recibe suficiente sustancia que, por su naturaleza viscosa, lo inmoviliza.
FEROMONAS DE MAMÍFEROS
El que los animales respondan a señales químicas se sabe desde la Antigüedad: los perros entrenados siguen a su presa por el olor.
Las sustancias químicas son a veces características de un individuo que las usa para demarcar su territorio. Más aún, ciertas sustancias le sirven para atraer miembros del sexo opuesto.
El marcar su territorio le ahorra muchas veces el tener que pelear, ya que el territorio marcado será respetado por otros congéneres y habrá pelea sólo cuando el territorio marcado sea invadido.
Las manadas de leones o los grupos de lobos tienen su territorio de grupo. Estos territorios son marcados con frecuencia con orina, con heces, o con diferentes glándulas, tal como lo hace el gigantesco roedor sudamericano, el capibara, con la glándula nasal.
Estas secreciones están compuestas por una gran variedad de sustancias químicas, las cuales sirven para identificar la especie, el sexo y aun a un individuo particular.
Se piensa que la secreción de las glándulas especiales debe estar compuesta por feromonas, pero sólo unas pocas han podido ser probadas como tales. De la misma forma, es probable que la orina, las heces y la saliva también contengan feromonas, pero ha resultado difícil comprobarlo.
HORMONAS MASCULINAS (ANDRÓGENOS)
Las hormonas masculinas son las responsables del comportamiento y las características masculinas del hombre y otros similares.
Los caracteres sexuales secundarios que en el hombre son, entre otros, el crecimiento de barba y bigote, en el gallo son muy notables y han servido para evaluar sustancias con actividad de hormona masculina.
Cuando un gallo es castrado, su cresta y espolones disminuyen en tamaño hasta casi desaparecer. Si a este gallo se le administra una hormona masculina como testosterona o androsterona, la cresta y espolones vuelven a crecer.
HORMONAS FEMENINAS (ESTRÓGENOS)
ESTRÓGENOS SINTÉTICOS (NO NATURALES)
Existen dos sustancias sintéticas que, aunque no poseen estructura de esteroide, tienen fuerte actividad hormonal (estrogénica). Estas son las drogas llamadas estilbestrol y hexestrol.
LA PROGESTERONA (ANTICONCEPTIVOS)
Desde principios del siglo (1911), L. Loeb demostró que el cuerpo amarillo del ovario inhibía la ovulación. L. Haberland, en 1921, al trasplantar ovarios de animales preñados a otros animales observó en estos últimos una esterilidad temporal. Los hechos anteriores indicaban que en el ovario y especialmente en el llamado cuerpo amarillo que se desarrolla en el ovario, después de la fecundación, existía una sustancia que produce esterilidad al evitar la ovulación.
La sustancia producida por el cuerpo amarillo y que evita que haya ovulación mientras dura el embarazo fue aislada en 1931 y se llamó progesterona.
EFECTOS SECUNDARIOS
Y efectivamente, el uso de esteroides anabólicos ayuda al desarrollo muscular, pero por desgracia existen efectos secundarios que pueden ir desde mal carácter y acné, hasta tumores mortales; aunque de ello no existen datos precisos.
Uno de los principales problemas con los atletas es que toman mucho más de las cantidades que normalmente se prescriben a los pacientes que se necesitan recuperar de una enfermedad. Los daños al hígado están perfectamente documentados en personas que abusan de los esteroides. Algunos atletas han muerto por desarrollar tumores cancerosos en el hígado. Otros efectos laterales están relacionados con el efecto hormonal: algunos sufren de acné, calvicie y alteración del deseo sexual. Peor todavía, algunos atletas del sexo masculino han sufrido agrandamiento del busto.
Si los efectos secundarios en el hombre son molestos, en la mujer son más preocupantes: aumento de vello en la cara, caída del pelo, voz más grave, crecimiento del clítoris e irregularidades en el ciclo menstrual, son sólo algunos de los trastornos reportados en mujeres que toman drogas anabólicas. Por fortuna, los efectos son reversibles.
Los efectos maléficos de los anábolicos dependen también de la edad. Si los toman los niños, les impide alcanzar su crecimiento normal, además de apresurarles la pubertad.
XV. Guerras químicas,
Accidentes químicos.
ANTES de que el hombre
apareciera sobre la Tierra ya existía la guerra. Los vegetales luchaban entre
sí por la luz y por el agua y sus armas eran sustancias químicas que inhiben la
germinación y el crecimiento del rival. La lucha contra insectos devoradores ha
sido constante durante millones de años. Las plantas mal armadas sucumben y son
sustituidas por las que, al evolucionar, han elaborado nuevas y más eficaces
sustancias que las defienden. Los insectos también responden, adaptándose hasta
tolerar las nuevas sustancias; muchos perecen y algunas especies se extinguen,
pero otras llegan a un acuerdo y logran lo que se llama simbiosis, brindándose
ayuda mutua, como el caso de laYucca y la Tegeticula mexicana. En
esta vida en simbiosis, la Yucca proporciona alimento y
materia prima hormonal a la mariposa nocturna. Ésta, en cambio, se encarga de
polinizar las flores de la planta asegurándole así su fructificación y reproducción.
De la misma forma, las abejas toman néctar y polen de las
flores, pero a cambio ayudan a la fructificación y por consiguiente a la
reproducción de la planta al polinizar sus flores.
La Acacia cornigera, que
tiene espinas huecas, es hogar de gran cantidad de hormigas del género Pseudomyrmex, que
no sólo viven en la planta, sino que se alimentan del líquido azucarado que
ésta secreta por medio de sus grandes glándulas foliares. A cambio de casa y
comida, las hormigas defienden a la planta contra otros depredadores.
GUERRA ENTRE INSECTOS Y
DE INSECTOS CONTRA ANIMALES MAYORES
Muchos insectos poseen aguijones conectados a glándulas productoras de sustancias tóxicas con los que se defienden de los intrusos. Las avispas y las abejas son insectos bien conocidos por inyectar sustancias que causan dolor y alergias. El hombre conoce bien estas cualidades, pues muchas veces por perturbar la tranquilidad del enjambre ha sido inyectado con dopamina o histamina, sustancias entre otras que son responsables del dolor, comezón e hinchazón de la parte atacada.
Las hormigas, por su parte, incluyen entre
sus armas, además del ácido fórmico u ácido de hormiga, los alcaloides
monomorina I, II y III, que, además de sustancias de defensa, le sirven para
marcar sus caminos.
Algunos insectos escupen sustancias tóxicas sobre el
enemigo, como lo hace el escarabajo bombardero.
La gente que es alérgica se puede sentir muy
mal por un solo piquete de abeja, de manera que, por ejemplo, la abeja africana
puede llegar hasta causar la muerte a estas personas sensibles.
Otros insectos producen repelentes para su defensa:
algunos gusanos malolientes producen aldehído butírico (CH3CH2CH2CHO).
Los escarabajos, como las catarinas y las luciérnagas,
producen alcaloides tetracíclicos que tienen muy mal olor.
El insecto bombardero del que hablamos anteriormente
escupe con violencia una mezcla de quinonas, como benzonona y toluquinona.
Los mamíferos también poseen armas químicas. Es bien conocido por todos el arma tan poderosa que posee el zorrillo. Cuando este animal es atacado por un depredador, ya sea el hombre u otro animal, utiliza su arma química: lanza con fuerza un líquido irritante con un olor desagradable que persiste por horas y aun por días en los objetos que tocó. Entre los componentes del olor a zorrillo se encuentra el butil mercaptano.
Muchos insectos poseen glándulas en donde se acumula el
veneno, teniendo cada uno una manera propia de inyectarlo. Las arañas, por
ejemplo, tienen sus glándulas venenosas en el cefalotórax y le inyectan veneno
a su presa.
Los escorpiones inyectan una sustancia venenosa que
contiene sustancias de bajo peso molecular. Entre ellas ya se han identificado
la histamina así como algunos compuestos indólicos.
EL HOMBRE USA
LA QUÍMICA PARA LA GUERRA
Posiblemente la primera reacción química que el hombre aprovechó para destruir a su enemigo fue el fuego. La misma reacción de oxidación que logró dominar para tener luz y calor, para cocinar alimentos y fabricar utensilios, en fin, para hacer su vida más placentera, fue usada para dar muerte a sus congéneres al quemar sus habitaciones y cosechas.
Al pasar el tiempo el hombre inventa un explosivo, la
mezcla de salitre, azufre y carbón, que es usada en un principio para hacer
cohetes que alegraron fiestas y celebraciones. Este descubrimiento, atribuido a
los chinos, fue utilizado posteriormente por el hombre para disparar
proyectiles y así poder cazar animales para su sustento.
Pero el hombre, siempre agresivo, terminó por emplear el
poder explosivo de la pólvora para hacer armas guerreras y así enfrentarse a su
enemigo.
Más tarde se fueron descubriendo explosivos más
poderosos. Esta sustancia es sumamente peligrosa pues explota con
mucha facilidad, por lo que debe tenerse mucho cuidado a la hora de su
fabricación. Con todo, a pesar de su peligrosidad el hombre la fabrica y la usa
para la guerra debido a la gran cantidad de gases que produce al explotar, pues
1 kg de nitroglicerina produce 782 litros de gases, además de una
gran cantidad de calor: 1 kg produce 1 6l6 K cal.
En la segunda Guerra Mundial se usó otra sustancia
orgánica nitrada, el trinitrotolueno oTNT, obtenida por tratamiento
del tolueno con mezcla sulfonítrica.
El TNT es
también un potente explosivo, pero de manejo mucho más seguro que la
nitroglicerina. 1 kg de TNT produce 730 litros de gases y 1 080 K cal. Es
decir, un volumen de ±1 litro se expande a 730 litros.
Pero el hombre no se ha conformado con fabricar armas
basadas en en reacciones químicas, sino que ha manipulado el átomo para crear
la bomba atómica
LA BOMBA DE HIROSHIMA
La bomba lanzada sobre Hiroshima fue una bola de uranio 235 no mayor de 8 cm de diámetro y de más o menos 5 kg. Pero como la fisión del uranio tiene un poder explosivo aproximadamente 10 millones de veces mayor que el TNT, la bomba debió equivaler a 20,000 tons de TNT.
USO DE SUSTANCIAS TÓXICAS
EN LA GUERRA
Las sustancias de alta toxicidad fueron utilizadas como armas químicas en la primera Guerra Mundial. Los alemanes lanzaron, en abril de 1915, una nube de cloro sobre los soldados franceses quienes, al no estar protegidos, tuvieron que retirarse varios kilómetros. Pocos días después los alemanes repitieron el ataque contra las tropas canadienses con los mismos resultados.
Las fuerzas aliadas pronto fueron protegidas con máscaras
que, aunque rudimentarias, evitaron un desastre que parecía inminente.
Un poco más tarde los alemanes continuaron con la guerra
química lanzando granadas con gases lacrimógenos. Sin embargo, la más poderosa
arma química usada en la primera Guerra Mundial fue el gas mostaza. Empleado
por primera vez en julio de 1917 por los alemanes en la batalla de Ypres, Bélgica,
causó terribles daños a las tropas francesas.
El gas mostaza se llamó de esta manera por tener un olor
parecido al de la mostaza. No es realmente un gas, sino un líquido irritante
que hierve a alta temperatura, el cual debido a su baja tensión superficial
produce vapores, los que, por su alta toxicidad, basta con que exista una muy
baja concentración en el aire para causar molestias a la gente o incluso
causarles la muerte.
El gas mostaza se prepara haciendo reaccionar etileno con
cloruro de azufre como se muestra en la siguiente reacción:
Una vez repuestos los ejércitos aliados de la sorpresa
que representó la guerra química, se protegieron adecuadamente, y sus
científicos comenzaron, a su vez, a idear y preparar sus propias armas
químicas.
Las sustancias empleadas por ambos bandos conforma una
larga lista, entre la que se cuenta a los gases lacrimógenos, como cloro y
bromoacetona,
diversas sustancias como cloro, sulfato de dimetilo, etil
carbazol, fosgeno, etc., y venenos de la sangre, como el ácido cianhídrico
(HCN). Este último es el gas que se usaba en la cámara de gases contra los
condenados a muerte.
Para la segunda Guerra Mundial se eliminaron
la mayor parte de las sustancias tóxicas utilizadas en la primera Guerra y sólo
quedaron unas cuantas como el gas mostaza, el fosgeno, y el ácido cianhídrico
para usos especiales.
GASES NEUROTÓXICOS
Estos gases son más letales que las armas químicas usadas en la primera Guerra Mundial. Son inodoros, por lo que es muy difícil detectarlos antes de que hayan hecho daño mortal.
La ventaja de las armas químicas es que son baratas y no
requieren de una tecnología muy avanzada, de manera que prácticamente cualquier
ejército puede ser dotado de ellas, sin contar de que son muy fáciles de
arrojar contra el enemigo.
ESPIONAJE QUÍMICO. EL
POLVO DE LOS ESPÍAS
El aldehído aromático 5(4-nitrofenilo)-2,4-pentadien -1-al ha sido usado para marcar el camino seguido diariamente por personas sometidas a investigación. El aldehído, que es un polvo amarillo, se coloca sobre objetos que normalmente se tocan, tales como el volante del automóvil, el pasamanos de la escalera y la cerradura de la puerta. La sustancia, colocada en pequeñas cantidades, se adhiere a la mano y luego puede ser detectada en los objetos que el individuo tocó posteriormente. De esta manera se puede seguir el trayecto de la persona investigada.
El aldehído aromático 5(4-nitrofenilo)-2,4-pentadien -1-al ha sido usado para marcar el camino seguido diariamente por personas sometidas a investigación. El aldehído, que es un polvo amarillo, se coloca sobre objetos que normalmente se tocan, tales como el volante del automóvil, el pasamanos de la escalera y la cerradura de la puerta. La sustancia, colocada en pequeñas cantidades, se adhiere a la mano y luego puede ser detectada en los objetos que el individuo tocó posteriormente. De esta manera se puede seguir el trayecto de la persona investigada.
Para detectar el aldehído se desarrolló un procedimiento
analítico que consiste en pasar un algodón humedecido con alcohol sobre el
objeto tocado. Se pone el algodón en un tubo de ensayo que contenga 0.5 ml de
metanol además de el mismo volumen de naftoresorcinol al 1% en metanol; al
agregar 0.5 ml de ac. clorhídrico concentrado se desarrolla un color que va del
rosado al violeta.
El color también se puede desarrollar directamente sobre
el algodón con que se limpió el objeto tocado por la persona investigada. Si a
este algodón se le añade el naftoresorcinol y una gota de ácido clorhídrico y
se tiñe de rosa o de violeta, indicará la presencia del polvo de aldehído.
El método es tan sensible, que se ha podido detectar la presencia
de 150 nanogramos de polvo de los espías distribuidos en 100 cm2.
Éste no se elimina de las manos por un simple
lavado con agua, pero si se lavan cuidadosamente con agua y jabón, la prueba es
negativa, indicando su total eliminación.
LOS HERBICIDAS COMO
ARMA QUÍMICA. SU USO EN VIETNAM
Estas sustancias fueron preparadas en una gran variedad
dependiendo de la planta que se pretende matar. El ácido 2,4,D fue un herbicida
selectivo que mata a plantas de hojas anchas sin dañar a los cereales, por lo
que protege en forma eficiente a cultivos de trigo, avena, cebada y otros
granos. En cambio, existen herbicidas tan potentes, como el ácido
3,4-diclorofenoxiacético, que mata a todo tipo de plantas, por lo que en vez de
proteger los cultivos los aniquila.
Ya en 1947 fue reconocido por algunas
autoridades británicas el potencial que pueden tener los herbicidas en la
guerra química, ya que podrían ser usados contra algunas naciones con efectos
más rápidos que un bloqueo y menos repugnantes que el uso de la bomba atómica.
EL AGENTE NARANJA
En la guerra de Vietnam fue utilizado para hacer que los
árboles perdieran sus hojas y que de esta manera no se pudiese esconder el
enemigo, aunque sin tener en cuenta el daño que se pudiera causar a largo plazo
al ambiente y a las personas.
Años después se ha visto el daño, pues grandes
extensiones del territorio vietnamita se volvieron áridos, la población ha
desarrollado cáncer y se han dado malformaciones en los recién nacidos.
Los excombatientes estadounidenses que estuvieron en
contacto con estos herbicidas en Vietnam han pedido una indemnización de 180
millones de dólares por el deterioro de su salud. El uso del 2,4,5,T ha sido
prohibido en los Estados Unidos y en algunos otros países.
EFECTOS DEL AGENTE
NARANJA
Las compañías químicas que proporcionaron el agente
naranja contaminado con dioxina fueron condenadas a pagar 180 millones de
dólares a los afectados. Así, unos 15 000 veteranos y los que de ellos
dependen, además de alrededor de 40 000 miembros del personal que pudieron demostrar
que estuvieron en contacto con el herbicida, fueron indemnizados.
Si más de 50 000 excombatientes de Vietnam
pudieron demostrar que fueron dañados por el agente naranja, ¿cuántos
vietnamitas habrán sido dañados? Esto no se sabe, pero deben ser indudablemente
muchos más de 50 000.
LLUVIA AMARILLA, POSIBLE
USO DE MICOTOXINAS COMO ARMAS DE GUERRA
Se pensó en la posibilidad de que la lluvia amarilla
tuviese que ver con alguno de los productos químicos usados en la guerra, tales
como gases neurotóxicos. A pesar de que las víctimas presentaban síntomas como
irritación de la piel, vómitos, diarrea, temblores y muertes frecuentes, los
primeros análisis no encontraron en las víctimas evidencias de gases
lacrimógenos, gas mostaza o gases neurotóxicos.
El mundo entero se alarmó cuando el 13 de septiembre de
1981 el secretario de Estado estadounidense, Alexander Haig, anunció en
Alemania que la lluvia ácida era provocada por armas rusas.
Desde ese momento la investigación se ha hecho más
activa, aunque sin lograr confirmar la aseveración de A. Haig. Muchos
científicos han encontrado pequeñas cantidades de micotoxinas en muestras de
alimentos recogidos en el sudeste de Asia.
Las micotoxinas que se cree que se encuentran en la
lluvia amarilla son las llamadas tricotecenos y son producidos por un hongo del
género Fusarium. Una de estas toxinas es la llamada
deoxynivolenol (DON) o vomitoxina.
La existencia de numerosas especies de Fusarium fueron
bien documentadas desde 1939 por el micólogo francés F. Bugnicourt, por lo que
existe la posibilidad de que algunos de ellos sean los productores de las
toxinas presentes en la lluvia amarilla.
Muchos científicos creen que este tipo de lluvia es
producida por el hombre y llevaron sus argumentos a la reunión llamada
"Primer Congreso Mundial sobre Nuevos Compuestos en Guerra Química y
Biológica". Sin embargo, las evidencias presentadas no convencieron a la
comunidad científica y menos al bioquímico de la Universidad de Harvard,
Matthew Meselson, quien asegura que la lluvia amarilla es un fenómeno natural,
que el color amarillo se debe a las heces de una abeja silvestre y que las
micotoxinas a los niveles encontrados de partes por millón pueden ser
producidas por hongos que viven en forma natural, siendo sus toxinas las que
infectan alimentos y producen los síntomas de la enfermedad.
En un viaje a Tailandia, Meselson y sus colegas fueron
sorprendidos por una lluvia amarilla producida por abejas. De inmediato
Meselson tomó 40 muestras, las que al ser analizadas revelaron la presencia de Fusarium. Ahora
sólo resta comprobar si son productoras de toxinas.
De confirmarse que la lluvia amarilla es un
fenómeno natural, no se podrá acusar a nadie de violar los tratados que
prohiben el uso de armas químicas y biológicas. Estos son el "Protocolo de
Ginebra de 1925", que prohibe el uso pero no la posesión de armas químicas
y bacteriológicas, y la "Convención de armas biológicas de 1972", que
prohibe no sólo el uso sino también la posesión de armas biológicas y de
toxinas.
LAS SUSTANCIAS TÓXICAS COMO
ACCIDENTES
Este gas, altamente tóxico, se emplea en la fabricación
del insecticida carbaril (1-naftil-metil carbamato), el que a su vez se prepara
con metil amina y con el también gas muy tóxico fosgeno.
La fábrica había operado normalmente por varios años hasta que la noche
del 2 de diciembre de 1984, después de haber ocurrido una inesperada reacción
en el tanque que contenía la muy reactiva sustancia química, isocianato de
metilo (CH3 N=C=O), el tanque se calentó, la
presión aumentó y a media noche liberó con violencia toneladas de isocianato de
metilo, que como una niebla mortal cubrió gran parte de la ciudad de Bhopal.
Mucha gente murió sin levantarse de su cama, algunos se levantaron ciegos y
tosiendo para caer muertos un poco más adelante. Mucha gente que vivía más
lejos de la planta quedó viva pero con severos daños en las vías respiratorias.
Murieron más de 2 000 personas, algunas 10 000 quedaron seriamente dañadas y
200 000 o más sufrieron daños menos graves
Este capítulo fue muy de mi agrado ya que nos da a conocer guerras químicas y accidentes químicos. Ayuda a entender facilmente los elementos que componen las bombas como la bomba Hiroshima y algunos accidentes quimicos que han pasado así como también habla sobre el llamado agente naranja que se aplicó sobre los bosques de Vietnam contaminado con dioxina, una sustancia altamente tóxica que provocó trastornos en la salud de los veteranos de la guerra de Vietnam. En estos accidentes se perdieron miles de vidas, y algunas personas quedaron con graves problemas de salud.
Opinión del libro
Para mi este libro se me hizo informativo e interesante. Este libro me ha ayudado a conocer mas cosas sobre el Universo, asimismo me ha enseñado la megadiversidad que tenemos los seres humanos de plantas, y la gran cantidad de elementos que conforman nuestro planeta Tierra. Cabe recalcar que algunas palabras para mí eran desconocidas, así que tuve que recurrir a algunas enciclopedias, pero fuera de eso es un libro capaz de facilitar los temas en un lenguaje fácil y sencillo. Y por último quiero mencionar que el capítulo IX fué mi favorito, ya que me interesó.
Síntesis del libro
Considero que toda la información contenida en este libro es de gran interés y con un gran índice de contenido.
El libro por ejemplo nos menciona un elemento muy importante considerado como base de la vida: Carbono (C), que lo podemos encontrar en la corteza terrestre en una proporción 0.03% formando parte de diversas moléculas, además de que podemos encontrarlo en sus tres estados físicos y algo que de lo que no tenia conocimiento era que el cuerpo duro y transparente del que llamamos “diamante” contiene átomos de carbono. También nos explica los principales elementos en el Universo y en el ser humano, así como en el planeta Tierra y en otros como son Saturno, Urano y Plutón.
En el transcurso de los años poco a poco el hombre a aprendido a utilizar los grandes descubrimientos que a traído la química pero en algunos casos no ha sido para beneficiarse así mismo, si no que ha traído grandes consecuencias y en algunos casos para dar muerte a sus congéneres, principalmente en las guerras. Por ejemplo la creación de bombas atómicas, que son extremadamente peligrosas para los seres humanos.
Otro tema es el gran avance que ha traído beneficios para la vida del hombre usando el conocimiento de las propiedades de algunas plantas que han sido utilizadas ya sea para curar algunas enfermedades, obtener colorantes, etc. Los primeros pueblos que se establecieron en el territorio mexicano tenían un amplio conocimiento acerca de las propiedades medicinales de plantas, que en la actualidad aún se siguen utilizando. Un ejemplo ha sido la planta de zoapatle, cihuapalli, esta planta era utilizada por las mujeres para inducir el parto, en la actualidad aún se conserva su uso.
Un proceso muy conocido es la fermentación, pero tal vez del cual no tenía conocimiento del porque sucedía, es un proceso que ya hemos observado ya sea cuando la leche se agria, cuando los frijoles se acedan.
La información que podemos encontrar en este libro puede sernos de gran utilidad, pues podemos adquirir nuevos conocimientos que posteriormente serán herramientas para tu futuro académico, o simplemente por querer saber más acerca de los temas incluidos en el libro.
Para concluir con la síntesis del contenido del libro, quiero recomendar este libro a las personas que tienen interés en la química o para aprender más para la clase de química. Es un libro sumamente completo sobre sus temas.
No hay comentarios:
Publicar un comentario